R E P O R 7 R E 8 U MW E S

€D 010 558 56

RESEARCH AND TEIHNOLOGY DIVISION REPORT FOR 19686.

- BY=- BAUM, C,

SYSTEM DEVE’ JPMEMNT CORP., SANTA MONICA, CALIF.

REPORT NUMBER NDEA-VIIA-1130-01 PUB DATE JAN 67
REPORT NUMBER B%-3-0738-01

REPORT NUMBER TM-530/010/,00

EDRS PRICE MF-$0.36 KC-$9.36 234P.

DESCRIPTORS~ %SYSTEMS APPROACH, %SYSTEMS ANALYSIS, *SYSTEMS
DEVELOPMENT, *COMPUTER ORIZNTED PROGRAMS, *PROGRAMING,
INFORMATION PROCESSING RZSEARCH PROJECTS, EDUCATIONAL
RESEARCH, SANTA MONIZA, CALIFQORNIA

THE WORX OF THE RESEARCH AND TECHNOLOGY DIVISION OF
SYSTEM DEVELOPMENT CORPORATION DURING 31966 1S REPORTED. THE
PROGRESS OF VARIOUS STUDIES AND ACTIVITIES DISCUSSED IN THE
REPORT WERE ADVANCED PROGRAMING, INFORMATION PROCESSING
RESEARCH, PROGKAMING SYSTEMS, DATA DASE SYSTEMS. LANGUAGE
PFR.OCESSING AND RETRIEVAL, BEHAVIORAL GAMING AND SIMULATION
RESEARCH EDUCATION AND TRAINING, MATHEMATICS AND OPERATIONS
RESEARCH, COMPUTER CENTER DEPARTMENT, AND SPECIAL SERVICE
OPERATIONS. IN ADDITION, THE REPORT CONTAINS DESCRIPTIONS OF
DIVISION-SPONSORED BOOKS, DEMONSTRATION PROGRAMS, MEETINGS
AND COLLOQUIUMS, AND PROFESSIONAL ACTIVITIES OF THE STAFF.
€TC)

e o ~ f
~ TM-530/010/900 :

E 4, 8, DEPARTMENT OF HEALTH, EDIJCATION AND WELFARE J
ol 3

Office of Education i
This documaent has been reproduced exsctly ag received from the '
person or organ.zauon originating It Points ot view or opinions
stated do not necessarily represent officlal C'ffice of Education
position or policy. ‘

e e S

-

| Research & Technology Division Report SYSTEM ;
l for 1966 i
| by the DEVELOPMENT
l Research & Technology Division Staff CORPORATION i
T D. L. Drukey, Division Manager oovapann avE o
B. 0. Barancik, Assistant Division Manager 2500 COLORADO AVE. .

K. W. Yarnold, Director of Research SANTA MONICA

J. I. Schwartz, Director of Technology
G. H. Dobbs, Mgr., Computer Center Dept. CALIFORNIA

C. Baum, Editor |
January 1967 90406

S TR T T, <R A A A e oA e 2 -SSRSO,
i
g
|
Q 4
!> g January 1967 i TM-530/010/00
0o
i
|
|
& ;
1
Eﬁ ;
a This document describes the work of SDC's Research ‘\
o & Technology Division for 1966. The progress of the i
j?x various studies and activities in the Division is :
described under the following major headings: Advanced ’
s Programming, Information Processing Research, Programming ;
Efi Systems, Data Base Systems, Language Processing & Retrieval, %
Behavioral Gaming and Simulation Research, Education & F
ﬂ Training, Mathematics & Operations Research, Computer
n Center Department, and Special Service Operatioms. In

addi*’ su, the back of the Report contains descriptions ‘Q
of Division-~sponsored books, demonstrable programs, w

meetings aud colloquia, and professional activities of
the staff.

January 1967 i T™-530/010/00

T T o Pl o N 3 CE e SR NS S

iy it 8
v
ACKNOWLEDGMENT |
‘ The work reported in this document was supported by the SDC Independent |
4 Research Program and by the following contracts and grants: |
| Agenc Contract or Grant Number :
w American Documentation Institute 65-1 @

j Department of Commerce "

; Bureau of Public Roads CPR-11-4191

Department of Defense
Advanced Research Projects Agency SD-286
DA-49-083 O0SA-3124
Order 773 (AF 19(628)-5166)

o

B F 1962867C0004
il \%
Department of Health, Edu -and Welfare oM :f‘
i ~g."F. Office of Education 7.14-9120-217 . EI i
4 i B L ' OE-6-85-076 ;
R Public Health Service 1 ROL 1M00065-1

| Fund for the Advancement of Education, 4
Ford Foundation

S S e T e e e

National Science Foundation GN-408
. GS-307
GY-371 |
NSF-C 424 ﬁ
GN-544 L
i Southwest Regional Laboratory for

Educational Research and Development

State of California

Department of Education 2591 '
U. §. Air Force %
Air Force Cambridge Research Laboratories, F 19628670008 s |
Office of Aerospace Research AF 19(628)-5166 . :
Air Force Office of Scientific Research, APOSR-1203-67 b
Office of Aerospace Research AF 19(628)-5166 &
Electronic Systems Division, “
Air Force Systems Command AF 19(628)-5166 ’ g

Rome Air Development Center AF 19(628)-5166

u. 3. N‘w !‘[|
Office of Naval Research Nonr-4421(00) =~ %
Nonr-4427 (00) "
Nonr-4745(00) i; ;;

yop - e

January 1967

’I'H. .'ll' l!.l'

CONTENTS

AND‘OVERVIEinO...............-......a.......cccccccccocccccocccvii

ADVANCED‘PRQQRAMMING..........n.......l................C.....O..............l-l

Compiler Construction Techniques....coceee cocoectosvocsscscesscsssscacesel=l
Syntax-Directed Compilers and Translatorfc...cccccesessssccccsvesecssl=3
Translation Between Procedure-Oriented Languages.....ccceccceeeecesecl=h
Compiler Techniques for Paging....cccccccececceccscccsccccsscvescescesl=bh
PL/1I for SDC 360 Time-Sharing System.....ccceceeeeesessccscccececcsal=?

Programming Languages....cccccceccesccsccccccoceecscscsccsssssscsceccceel8
LISP 2.--..........--ccc.ccccccccoccccccccc.cccccccc.c.co-cocc...ctcl"s
Data Base Oriented Programming Language....ccccceceeeccccccccecncesol=l2

Aid' to Prosr&mims.....-.-...-.‘.-...........“...-...-.-........-......N'la‘
Interactive Programming Support SyStem...cc.crccocsrccscccsccscscnssl=l3
A“tmted‘ Flow‘ChlrtiIIS.......‘..u...........u....‘...‘....u.........1'1‘7
Graphic INpPut/OUtPUt....cceceecersoccccscsccassccscscsascoscosvessoceelelB
Automatic Code IMProvemenit.. ..ccccececcescrssscscssccoscscssscscssssssl=2l

Computer Programming Management,.........c.cceeceeeceesescescscescsceseel=22
Program Cost Analysis....cceccecccocescencesaesccrascsscacssccscsnaseel=22
A System for Reporting Cost Data for Computer Progranming...........l-24

Compl‘eted Stl’ﬂ‘.eﬁ...-.‘.......“...............‘............‘.....-.-......1'2‘5

. ‘RESEA‘RC‘........i...........0....'.0.‘...'.02'-1
Formal Models of Information Processing.....ccccceccececcrscccccsscoccceel™d
Theory of Algorithmic LanguaBe/Seececs soccsssecscsscsscavocsssscocaels3
The I-O];ic °£ ‘Ql.lelti‘.ﬂtll.................‘,................“a..........2'4
Augmentation of Man's INtellect . ccerercesvscccorovscovssecscrsscsssscseeld™d
Problem Solving and Lesrning by Man-Machine Teams....cococeveccenese2=5
A“mented‘ Statiﬂtici‘.‘an*..‘..........-........-......-...”“..........2"9
synthe"t’ of Behavior.....'t..‘ﬂ.....&.@......9.0....‘6“...‘...60..lanll
Steps Toward Validating a Computer Model ¢f Social Influence.......,2-13
Completed StudAed..cceecscecsccscscccsoscsccsvccssssccvssccrsscssssccssscdell

, S S" s;....-.-.-.-..o»ooccooccu‘cacocco.coacccocc.coccoouce.;coa"l
Time-Sharing System Development. .coccececececcssceossccosscnccossioseasesed®3
‘Re.“mh in Tm‘smringu.u.uu.....u....u...-.....................3"9‘
Programmer Ferformance Uader On-Line and Off-Line Conditions......cs....3=15
Time-Sharing Computer NetwOrkS....ccoococevvcccvocssscsscnscssscssssessssI=lB

) E 4 §¢oocOccccoou-oococccoccocucocccncceconooccoccococc-coccmcooll"'l
G!nerll'hrpﬂse D&'pl‘ay ‘syltemu..-..-.a..-....u--...-............-....4'5
Tss"mmu.ou.e.-...........-..-u...o-o..-..».....-.-....-..c........u4'7
Time~Shared Datu Management System...cececevevecevecccssceltocacascscssslt=9
Methods for Mandling English Text Within TIMS..:...ccoccnceccsccennoascsoliell
Fact Retrieval fyom TIMS Using Natural Languagie......ccecceossccsccecsdi=l2
Evalustion of List Processing for Data Manugemint.......ceeeeeecoosccescd=13d

tit TM-530/010/00

. ra— w————u-—w—-—'————'——-—-w——w—'—'—-——w—' " fres -

SR I . WA RS P B i e e D i e S Db i e e e O U S N T S VY S

January 1967 iv T™-530/010/00

*

mﬁME PRMESSI!!Q AND‘ ‘RETRI‘EVAL...00.0‘00‘00000090000000oo.o....oooo‘osbooooos-l ﬁ

Language Processing. ... c.coeceeeresccenusosesssesosscsserossscnsncoccensed®d
Lexicographic Studied..cveivieriieiceereentecacrvesocsccroscvescecesd=l
Anaphoric and Discourse AnBlySiS....cccecescescnctvecccccoscscccnscesd=h
Synthex: The Computer Synthesis of Language Behavior........cceceee.57
Transformational Grammar TeSter.....cacesoecvecocstoccsccsacsccscsssdoll
Synonymy and Semantic Classification......cceieeveevcecescscceccoeesdelt
Query Subset Studies.....ccceececcscccsecceroscnrcsasssrcscosccscessd®ly
Stylistic Analysis...ccceeeeuseeceecesococseasconsssnsscsonsssconcesdol?

Document Retrieval.......eeeevcescocsoscococecsosccsssconscossssscossessd=lB
Automatic Classification.....cvceeeveeececrcrcosecescosscsscscccrencead=lB
BOLD: Bibliographic On-Line Di8play....cccvececcccceocscsccccceseessI=20
SURF: EDP-based Support of User Records and FileS.......ccecevveoseo$=25
Automatic Extracting and AbStracting...ccveeveececccccsosccncecceeesI26

Evaluation Studies...cccoceeuiecoeccesesrosecssosssscsscnsssssaccscneessI®26
Document Representation TechniquesS........ceeoceeeeeeevsvocccsccosases 926
Empiirical Study of Relcovance ASGoSSMENt...ceviocscccconscsccccncesveesI=28

Completed StudieB...cccecevecsesesevsnsoncscacsessosssassacssancncessoseI®3l

e AT I T L e i Y.

. = 5 "RESE-“R.‘“ooo-ooooooouo:ooo.oooooooooooocn.o 6.1
Human Dnta Processinu Behavior. ..cocoeeeeeersrsncosonscacescaccaccnsces 6°b
Decision Making and Leader Selectfon......cceeeevecceccceccscnsccsocseesbebh .
Bargaining and Negotiation Behavior........cceceececevvocsavoovcscnceseesb=? f
LGVi‘.‘athan......-.....................-..................................‘6'1‘2 » £
Computer Methodology for Dats AnalysiS......eecececevcecccncaroscsncesscbelb oy ¢

TRACE: Time-Shared Routines for Analysis, Classification, Km ‘ﬁ
u

and‘ ‘Eva‘lu‘ati‘-onowooooooo-o.oocoooocco.a‘ooo..oooo-oooao..ooooc0000005"1‘6‘

IDEA: Inductive Data Exploration and AnalysisS..eccceeeeceucesacacsosberl?

Display and Computer Aids to Human Prodlem SOLving....seeeeeeecsoes.6°22
VARIANC: Algorithm to Compute Predict:.:d Preasymptotic Variance

0f Response Proportions.....vceiensscsesccescscocascvacsssssesessesb=23

BINAL: A Program to Analyze Binary 7equUENCESB....ccccevvescnsccscesssb=2b

Completed Studies....oceeiecneceresanioteersesscscescacsnsssncssessesescd=25

EQ!% !‘IQ“ !mD,TMIMm.OOO0000000oov00.0.0..0..0.00000060..0000.000000000-0.7-1

Development of a Computer-Based Educational System...........oeeeecevsoc?=3

Computer-Based Instruction in Stotistical Inference...cc..e.ceveeecccceca?=S

PIANIT: Programming Language for Interactive Teaching.........c.........7=8

Vocational Counseling.....cc.cveeeenreerocecrvoccocoonencnoseesoscoscossed=ll
Evaluation and Revision of Classroom ProceduresS........eceneeeeeeesoeses?~1b
Porelgn Language Study...ooeeerecroseeerssconcsecscocasscsnssuscsascoseed=l5
Methods of Presenting Instructional Material........e.ccveeeevcesecccsse?=l6
Si.lmﬂ.‘ati‘.on‘ Of a Flexible S‘Chool‘o.u.‘...o..........-...-............,...ao7'l‘8‘
Computer-Assisted Teaching of Mathematics.cveueensueeaecenovascononsosessf=20
Completed StUdLes. .. oiureieeiniietirioorencanscoroccecessosssssssaacesesl=20

TR R T YT
ET SEIYTEE
R R

EaES v

foned i e Y W i B s S o Bt et e e e el e D St i i i e TN S i SRS ST O e it o s e e g
S i c £ S S el i K

January 1967 v T™-530/010/00

T TICS AND OPERATIONS RESEARCH. ..ccvvececcencocanissanssnsassoss sarens8=l
Mathematical Models of Stochustic System ElementS...cvecee.vccceeccsssee8=3
Mathematical Models of Vehicular Traffic....cccerveeeccescraccaoeesd=3
Models OFf COmbBAC. covoceeeerrcosrocsescssonscosassnssscsannsasssansee B3
Statistical Methods in Oporations Research......ccoceveeciecinccssonsss 84
Generally Applicable Statistical Techniques....c..cioeeesecescnscss B84
Factor Analysis Methodology.....ccececeericcsocscarconserorscncsssoes8=5
Mathematical Programiing....c..c.eoeecosccscocssocsccossssssasssssssesss85
Straceglies of Iten Presentation in Learning Processes.....c..........85
Scheduling Under Resource RestraintsS......c..ccecesrveecccscscccocsssB=?
Static Allocation of Computer Core-Storage Space.....cceccsvevecess s8-8
Dynamic Programming and Control Theory.....c.....ceceeescsseccceccss 89
Numerical ANAL/SiS....cccceereroscsscocssscesocsssaarossonassssssscscsseB=9
Vehicular Traffic Study.......ceeeeuceererosecsroresasonsscasacosecsnses8el2
Statistical Decision Procedures for Mathematical Learning Models........8-20
Celestial Mechanics and Differential EquationS.........cevceevanccsses..8=21
Data Compression TechniquesS...c.cevevceecccectoascsosssansesnnssosesses 822
Completed StudLes. covvoeeiiecessssuorocscncessssanssatsssssnssssssenese8-23

I ‘ERGM‘ER DE?A‘MNT-...--....................-....-..................‘9*1‘
Programming Branch...e..coeesierseresecesccocsorssoosssoasssssasscccccoanead=d
Special Projects Staff..c.....coeetoreracnsrsosacsiianccstoscencendd=d
Operating SyStem.....ccueeceoreocescssasssosssvansossonnssssssonasssssd™d
SUPPOXL SYSLEMB. .o svovrsrsosoararssossssssarsostcacsssssssssensvecd=h
Computer Center Englneering.......cceeceeieeereronssncossccccccoscesnsasd=d
sta’:iltic&l‘ ‘services.‘.--.--......-...;-...--....‘..‘.-.-..................‘9'7

Resear\‘vh ﬂnd‘ Technolow mbora‘tory..ootttt.t.tott“.ttt0000000‘00000‘0009-7

PECIAL SERVICE OPERSTLONS ... cecon-ooscsovsssssecnssnssssoncsssscasesosssesslO=l
’ Informstion Processing Information Center.........cceceseetoaroacccscs 10=1
Information Center on Information Science and Technologye:..e..ovees.s..10-3
Programming DocuUmentation. ..oeeeeeseucecsssossoessssntssssssossssossnssl0=3

RESEARCH AND TECHNOLOGY DIVISION BOOKS.:...ceeseecseseoreccssscsassensssesssll=l
Annual Review of Information Science and Technology..ec.oecoeecocerceaall=l
Automated Language Processing......cceoevcecescacescrsscecsossssnsaseaell=2
Handbook of Nonparametric StatisticBc...cccicveocvocncesrcsorscrosnsseselle2
Table of Random NUmberS...cecvveeesocesscesscsscsccsosssssoscsasvesassealle
Man=Machine Digltal Systems.....-cceceeeatccessssssocccessvecrsvscnsessll=d
Computer Applications in the Bahavioral ScienceS.....cceeecseesrcecsasall=ld
Manpower Development...ccceeeececcssasossccssscoressoasevesssssscesssesll=d

‘l]!‘!moRY OF DmONSTRA‘B‘m,MTD PRMRAMS‘-t.-.tttot..t.....tt.ttttott.tt.ttt.‘A‘l
smmsm..t‘..t-.0--.-t.-o.-0..0-.&'.005-.-0-..tu.&.ttotct'-."‘-‘.ot-w.-‘-OAA.3‘

REsmcH‘com‘ gum.ooo--.oitctu0'00t.ct--.-.‘0-00...--t.to'-od.'t‘ct..-o-t--..’A‘B
P.ROFESSIONAL Ac‘mivITIESO--t.ooto-.-0‘0ttt‘.t".-.a..»a-ocotbttot-to.-"t.-.--tA*?

f

W R

Januvary 1967

it e oy

Sgkes v

Ciita oo

Ipietat Tl

vi

R R P P T

MW”’ T ——
| REseARCH & TECHNDLOGY |
| D#/ISION

Tt

RESEARCH
DIRECTORATE

i o e B e

TecuNotoey | |
DIRECTORATE

Sl T et

™-530/010/00

COMPUTER CENTER |
DEPARTMENT |

7 Mathematics & T]“
] Operations Ressavch |

Information
~ Systems
Technology

Programming
Bronch

“ i
- ‘\ Informatior: Processing ‘
Research 1

Education & H‘
Training

Labor:.ry & |
Support Operations

\
|
,;‘

" Behavioral
Gaming &
_ Simulation

Programming
Technology

~ Language)
Processing 1
~ Research N

Systems]

Augmentation of
] Man's Intelligence |

FIGURE 1.

ORGANIZATION OF RESEARCH & TECHNOLOGY DIVISION

TR T

TR A

e SR

Sy

R SR

b

P

1

]

b

1

a £
I | 3
o %)
i ¢
b :

]

£

January 1967 vii

™-530/010/00

INTRODUCTION AND OVERVIEW

Mission

The mission of SDC's Research & Technology
Division is to provide support for .the rest of
the Corporaticn and for its customers. The pro-
gram consists of extensive research and technology
development, particula:ly in the information
sciences, and the provision of a new co.puter
center for the Corporation. The research and
technology tasks are intended to develop the
tools which SDC's customers will use in carrying
out their functions and which the professional SDr,
empioyees will use in the fulfillment of their
contractual commitments to governmental and other
clients. The computer center is being developed
in the Research & Technology Division se¢ that the
latest technological developments will be avail-

able to all SDC professionals at an early stage.

Organization

The program is carried out in three orgarniza-
tional units--the Research Directorate, the
Technology Directorate, and the Computer Center
Department (s<e Figure 1). Because of the close
relationshipsjamong these units, the lines of
demarcation are not clear-cut ameng them. The
Research Directorate is generally responsible for
programs with long-range implicat ons, for which
there may not be an immediate match to existing
requirements. The Technolegy Directorate's work
spans the interval between these long-range pro-
grams and appliable technology; it is therefore
concerned with applied research, pretechnology,
and technology development, as well as a certain

amount of fundamental research. For much of the

Technology Directorate's work, the end objective

iy pretty well known at the time the project is

undertaken and its relationship te SBC and our
customers' operations is often fairly clear-cut
(although the way of achieving those desired ends
may not be quite so well determined). The Computer
Center Department has been developing the software
for a new computing complex, intended for a wide

range of corporate users.

Technical Overview

The research and technology programs are com-
posed of several main threads of activities which
are mutually supporting. Typically, each thread
includes projects ranging from fairly basic

research through the development of technology.

The first of these threads relates to the
handling of large files of structured information--
the data base problem. 1In this 2iea, we are
concerned with developing a series of tools that
SDC's professionals and customers can apply to the
operational problems of data management. We want
to make it possible for a nonprogrammer to describe,
organize, and update his data, and then have the
programming system carry out the mechanical func-
tions of processing the data. In addition, we
wish to make it simple for the user to ask for
data in a manner that is convenient and natural to
his way of operation and to have the system under-
stand the details of data storage, organization,
and conversion. Our interests in this area
include the content as well as the format of the
computer output.

The second main taread of our efforts concerns

computer programming languagee. Most past work
in this area has consisted of developing languages

for the professional carputer programmex. These

TN T A S T T o e

i

v

RSN N TRy
o S i wdail ENEE RTINS SLINRE N

January 1967 viii

Iénguages were aimed at relieving him of scme of
the tedium and bookkeeping neceSSéry to produce
computer programs. A variety of such languages
has been produced, including the JOVIAL language
developed by SDC and used extens’vely within the
Corporation and externaily. We have augmented
this traditlonal approach to programming languages
with initial efforts at providing languages for
the nonprogrammer. The overall work spans the
spectrum from bass: theory of programming
languages through the implementation of compilers
for several languages of present interest. Encom-
pessed in this domain are the development of new
aids for the programmer and of techniques for

managing the romputer program deve' pment process.

The third thread of our activities concerns the
executive systems within which the programs of a
computing complex operate. In particular, an
innovative technology of time-sharing, which makes
it feasible for users to operate on-line in direct
two-way conversation with the computer, has been
developed through this work. Our efforts are
aimed at exploiting the capability inherent in
time-sharing systems and in understanding the
basic scheduling and allocation processes
associsted with having a number of prog.ams
operating more or less simultaneously in the
computer complex. In addition, much of the
overall emphasis of our programs in technology
and of the techniques that we use in research
revolves around our unusual on-line capabilities;
we are concerned with the advantages made feasible
by having the computer directly accessible to the
users and with expioiting these advantages for the
various purposes toward which the whole program is
aimed.

The fourth thread is concerned with computer
processing of natural language, that is, English
ag it 1s spoken and written--as distinct from the
formatted languages of data bage systems or the
formal computer languages. A sizeable program of
basic research is being devoted to solving the

problems of semantic and syntactic analysis‘ﬁf

T™-530/010/00

text by computer, toward the eventual goal of
providing capabilities for using subsets of natural
English as query or command lanpuages for computers,
and enabling computers to read, understand, and
generate Eaglish text. At the more applied end
of the spectrum, we are concerned with developing
tools for automatic classification and indexing
of documents and otherwise automating the
storage and retrieval functions of libraries

and document centers as well &3 of individual

document holders.

The fifth thread of our activitics relates to
the processes of education. In this area we are
concerned with new technologies for instruction,
particularly the use of progranmed materials;
with the potential offered vy the computer for
assisting teachers, counselers, ang administrators;
and wicth che implications of “hese new technologies
for school administration, including problems of
flexible scheduling of resources and personnel.
This program is continuing to broaden in scope and
to place increasing emphasis on bringing new

technologies into use in the public schoo? systems.

Finally, we have programs in mathematics and
operations research and in exploring the processes
of humau decision making, and of man-machineﬂ
interaction, through behavioral gaming. Much of
the mathematical work is of a research nature and
relatzs in a general way to corporate interests in
simulation, modeling, and system analysis. The
work in behavioral gaming and simulation is leading
to a better understanding of the nature of group
decision making and the functioning of organizutions,
and is also resulting in a set of innovative tools
for the conduct of behavioral games and computer=
based data analysis. 1In the long run, we hope to
see this work lead to improved comprehension of
the interaction of people within their society and
to the knowledge that makes it possible to improve
that society.

It should be pointed out that these basic threads
intertwine as we begin to derive appliable tech-
nologies from them.

The operating systems provide

et AR e Jhadhi

January 1967 ix

the framework within which all of the computer
programs operate. The data base systems are
integral to the operating system and will, in

our plans, provide a data management function for
all system users. The operating and data base
systems are written in the programming languages
that we have been developing; and our language
processors or compilers are embedded in the
systems. Although there was a considerable gap
between the natural langusge efforts and those
related to the more formal languages, we are
begloning to develop systems that combine mixed-
mode retrieval capabilities of both structured
and unstructured data. The mathematics and
operations research personnel provide consulting
agsistance for many of the other research ana
technology projects. The work in education has
been focusing on the potential of onéline‘man-
machine interaction, made possible by time-sharing
technology. The behavioral gaming area is pro-
ducing novel techniques for human use of computer~
based consoles and displays. Finally, the Computer
Center Department will be providing--on an
operational basis for a variety of users--the

data base, time-sharing, and advanced compiler
concepts developed by the research and technology

program.

The past year was one of actual or impending
transition for many of the 70-some R&TD projects
that utilize a computer, as we moved toward
replacing existing facilities with a third-
Specifically,
the Philco 2000, which since 1961 had supported

many SDC's Independent Research projects and the

generation computing installation.

original Systems‘Simulation‘Rese&rch\Laboratory,
was sold in September 1966. The IBM Q-32 computer,
which has been supporting the balance of the
computer-based projects in R&TD on the SDC-
ploneered Time~-Sh
phase out late in V7.

'ng System, is scheduled to
Replacing these computers,
as well as some othevs at SDC, is a series of
IBM S/360 machines, for which R&TD's Computer

T™-530/010/00

Center Department has been developing the complete
software. A 360 Model 50 was operational from
October 1365 through July 1966; it is being
replaced by a time-sharad Model 65 which began to
achieve a useful capability during the latter

part of the year.

The changeover in computers is resulting in mixed

consequences. On the one hand, certain experiments
have been delayed due to reprogramming, a hilatus

in machine availability, and the uncertainties

that inevitably accompany the installation of new
equipment. On the other hand, many of the projects
are taking this opportunity to make long-sought
program changes and design improvements afforded
by this breathing space and by the more powerful

capabilities of the new installation.

Turning to specific projects, the data base area
was marked by increased usage of our prototype
TSS-LUCID, an on-line data

management system, was used by about 50 people

data management tools,

each month during 1966, including many extern:l
users, for a wide range of data management prob-
lems. The General-Purpose Display System (GPDS)
was successfully harnessed to a particular
application, namely the calculation and display
of salary maturity curves. Various parts of the
new Time-Shared Data Management System=--an
integrated set of data handling tools based on
experience with LUCID, GPDS, and other systems--
reached promising stages of design, coding, and
TDMS is scheduled to be a major

resource on SDC's 360 Time-Sharing System.

checkout .

Ia the realm of programming languages, the
techniques of metacompilation received increased
emphasis as a means of reducing the cost and
time to produce compilers. A compiier system,
called META, and an interpretive system, called
METAS, have been developed and refined; they have
found many useful applications including the
production of compilers, translation between
programming languages, data base conversions, and

program reformatting. A version of an advanced

]
;

B R N T R A TR R, U N R T

TR AT TS

H

Januery 1967

list processing language, LISP 1.5, was developed
during the year, and work was initiated on LISP 2,
which will provide improved capabilities for
manipulating complex data structures and perform-
ing lengthy arithmetic computations. Design

and coding were well under way for an Interactive
Programming Support System, intended to give

the professional programmer the maximum benefit
of the on-lime capability of time-sharing.
Programs were developed to facilitate automatic
recognition of handwritten characters, automatic
flow charting, and automatic code improvement.
Finally, a handbook to aid managers in preparing
estimates of computer program development pro-

jects was published.

The executive system area underwent profound
changes, with final improvements made to the
Time-Sharing System (TSS) on the Q-32, and the
development of a new system on the 360. One of
the first general-purpose time-gharing systems,
TSS became operational in June 1963 and has been
continually improved and refined over the years,
to the point where its sponsor, the Advanced
Research Projects Agency, felt that it had well
fulfilled its purpose as a developmental research
project. During 1966, the system was made
available to interested users on a subscription
basis; ARPA support is no lenger required and
has been redirected to more developmental efforts.
The more than 500 users who previously had free
access to the system are now limited to those
who use it on a paid basis. Durigg the year, a
comparison of on-line versus off-line programmer
performance resulted in qualified advantages for
time-sharing. Additionally, a small step was
taken toward the next important area in executive
systems~-the connecting of several computers into
a network--by the linking of the Q-32 computer in
Santa Monica to the TX-2 computer at Lincoln

Laboratory in Boston.

In the natural language area, several new
studies were initiated to complement the existing

work on automated language processing. The new

M-530/010/00

studies, sponsored by the Advanced Research Pro-
jects Agency, include a computer-based semantic
analysis of sense relationships of the words in

a dictionary, the development of an on-line

transformational grammar tester, and a study of the

Addi-
tionally, Protosynthex III, a fairly complete

use of English subsets in query systems.

approach to a natural language processor, emerged

from the preliminary design stage. In the library

application area, BOLD, a highly automated display-

oriented document storage and retrieval system,
and SURF, a personal file retrieval system, were
further refined and received initial usage. A
new method of automatic document classification,
called ALCAPP, broke through previously restric-
tive barriers of cost and storage space. A paper
on ALCAPP, as well as one on an SDC study to
evaluate document representations, were two of the
three prize-winners at the annual meeting of the

American Documentation Instituce.

The education and training area completed several
studies in 1966, including the development of a
computer-based simulation of an innovative school;
the development of 28 criterion tests that indicate
absolute levels of mastery in foreign-language
comprehension, speaking, reading, and writing; and
a comparison of linear vs. branching strategies
in presenting programmed material. Two major new
studies were begun during the year: the develop-
ment of a computer-based educational system for
the Southwest Regional Laboratory for Educational
Research and Development, and a study to adapt the
ShC~-designed "empirical trial-and-revision”

process to the development of instructional

materials and procedures for classrooms serving

Congid-

erable progress was made in ongoing investigatioas

predominantly Spanish-American students.
into the use of time-sharing in education: in one
case to improve the counseling function; in another
to improve the teaching of statistical inference
at the college level. A very promising outcome

of the last-named study is an on-line lesson design

:JN‘ 4,

o
i

S

e T o T e

January 1967 ®i

and teaching program called PLANIT, which 1s

recelving wide interest and initial usage.

The mathematics and operations reseavch staff
continued to sclve a number of challenging prob-
lems. With partial funding from the Bureau of
Public Roads, SDC's Vehicular Traffic Study
completed the coding, debugging, and exercising
of an initial version of a computer simulation
model of a freeway diamond interchange. A new
project was begun on ways tc compress the enor-
mous amounts of data transmitted from spaceborne
hardware. In celestial mechanics, new procedures
for existence proofs were derived and applied,
and a very efficient aumerical technique was
devised for solving certain differential equations,
Additional work yielded new results in such areas
as optimal strategies for item presentation in
education, stochastic duelg, life-testing,
validation of simulation models, factor analysis,
The algorithmic

lauguages project continued to contribuvte

and mathematical programming.

important insighits into formal languages through
the noteworthy pubiication of 12 papers in
major journals during 1966.

In the area of man-machine interaction, work
A robot-=like

system, capable of following simple commands,

continued along a broad front.

was programmed and several films were made of
its operation on a display scope. The augmenta-
tion of human intellect by machine was furthered
by the initiation of an "“augmented statistician"
project, the development of on interactive prob-
lem-solving task called Shimoku, the completion
of a set of expzriments to test the effectiveuness
of various digplay aids to human problem solving,
and the development of various on-line data
manipulation systems. The continuing research
on bargaining and negotiation behavior completed
several major experiments during the year,
including a transnational study which culminated
in a conference of participating researchers
from various nations in Santa Monica in November.

The Leviathan system, a computer-based model of

™-530/010/00

large soclal organizations, was used experimentally
as a training tool in a management workshop con-
ducted at the University of Southern California

for Alr Force officers.

As mentioned before, the Computer Center
Department completed design and programming for
a number of operating systems on a series of
IBM 360s: a batch-processing Model 50, which was
operational frem October 1965 through July 1966;
an interim batch-precessing system on the Model 65,
operational since July; and a time-sharing system
on the Model 65, for which an initial version was
released in November. In addition, the Department
has been developing other supporting aids, includ-
ing a 360 JOVIAL compiler, on-line and off-line
debugging tools, program and text editing capabil-
ities, file maintenance programs, and assembly
language processors. The laboratory and planning
staffs have been active in the selection and
acquisition of a complex of displays and other
ancillary equipment to be used in connection with
the 360.

Organizational Changes and Appointments

In recognition of his technical and administra-
tive accomplishments as assistant to the R&TD
Manager, Bill Barancik was appointed Assistant
Division Manager in January 1967.

During 1966, several organizational changes took
place in the management and composition of the
various areas of the Research and Technology
Directorates. In March, Gerald Shure wus named
head of the Dacision Processes Research staif.
In August, the Research Directorate underwent a
restructuring: the concept of "staff" areas was
changed to one of "program" areas; Decision
Processes Research was replaced by Behavioral
Gaming & Simulation (with Shure as head); and a
new program, Augmentation of Man's Intellect, was
formed with Research Director Kenneth Yarnold as
acting head. In December, a logical bifurcation
of the language Processing and Retrieval staff
resulted in a research-oriented Language Processing

- T Y T e o o TEem e o o

January 1967 xit

Research Program, under Robert Simmons, in the
Research Directorate, and an applications-oriented
Information Systems Technology staff, under

Carles Cuadra, in the Technology Directorate.

In the Computer Center Departmenc, Al lrvine,
formerly head of the UCLA Computer Network pro-
Ject's programming staff, joined SDC to head the
CCD's Programming Branch, and Jerry Hanna was
appointed Assistant te the CCD Manager, respon-
sible for the nonprogramming aspects of the

Department's activities.

Other major appointments during the year
included:

Research Program) and Gerald Shure to Senior

Andy Gafarian (Mathematics & Operations

Scientists; and Robert Bleier and Sally Bowman
(both of the Data Base Systems staff) to Research

Leaders.

Interaction with Other Divisions

During 1966, the Research & Technology
Division increased its efforts to communicate
with and support ¢ r corporate organizations.

A survey undertaken in June of 1966 indicated
that, during that month alone, approximately 60
R&ID personnel, or about 30 percent of the profes-
sional staff, were actively engaged in 23 clearly
identifiable, special-purpose, ad hoe activities
These
activities ranged from briefings on R&TH projects

in support of other SDC organizations.

to long-term consultation on projects of other
divisions. It should be stressed that this survey

did not cover the normally ongoing corporate-wide

responsibilities of R&ID, which include the

development of the Computer Center, maintenance

of infoumation‘centers‘on‘infonmatton‘processing
and information science, furnishing of statistical
services, and, more generally, the overall
development of the products of research and
technology, which are intended for the use of

the other SDC organizations and their cwstomers.,
An importaant advance in corporate communication

was the formation of five Interdivisional Tech~

nical Steering Committees by SDC President Melahn

TH-530/010/00

in September 1966, The committees, chairved by
genior corporate mandgers and composed of high-
level technical representatlves from the various
ShC organizations, are intended to provide a
mechanism for the communication of technical
information among SDC's divisions and to help
solve common problems in the areas of data base
systems, education‘and‘training technology,
executive systems, natural language processing,
and programning languages. 1In addition to actilve
participation on the Committees, R&TD has supported
them through initial conception and planning, and
provision of recording personnel. During the last
four months of 1966 the five Committees met

a total of 21 times, and can point to a number of
accomplishments, such as the‘undertaking of new
interdivisional projects, improved utilization of
common resources, and‘measurably enhanced communi-

cations,

Another innovation in 1966 was the R&TD internship

program.

Under this program, individuals selected
by the other divisions Join R&TD for periods of up
to six menths, to participate actively in research
and technology projects. The objective is to pro-
vide the participants with a working knowledge

of R&TD's technology, which they will ultimately
carry back to their own organizations. Eight
interns joined R&TD in the last half of 1966,
Judging from initial indieatiéns, the program is
accomplishing its aims and will be continued in
1967,

Also during the year, R&TD provided two 2-day
sessions of special briefings and demonstrations
expressly for personnel in the other divisions.
Approximately 150 middle management and senior
technical personnel from throughout SDC received
detailed descriptions of the ten most frequently
demonstrated R&TD products.

Communications

As in the past, R&TD continued an active program

of communication, both internally and externally,

Division personnel were coordinators and hosts for

s
3

k{

I
A

ST e v e e R

r,‘mi

January 1967

a number of lecal, national and international
meetings. Also, 20 research colloquia, featuring
both SDC and eiternal speakers, were held during
the year; these are open to all SDC persorqel

and invited outsiders.

One of the most effective ways in which we
have communicated to the outside world is through
live demonstrations of the programs developed
in R&TD,
to SDC received first-hand exposure to man-machine

During 1966, several thousand visitors

interaction under time-sharing, as the computer
displayed to them, on scopes or teletypes, the
results of the actions taken by the demonstrators
or, in many cases, by the visitors themselves.
Additionally we gave or supported a large number
of remote demonstrations, linked via teletype to
the Q-32 computer in Santa Monica, at symposia
throughout the country and abroad. During the
year considerable effort was devoted to improving
our demonstrations, from the standpoints of both
presentation and technical support. A number of
the more frequently demonstrated programs are
briefly described in the Appendix.

During 1966, approximately 40 consultants and
sélected graduate students participated in the
Division's prograni, over periods ranging from
several days to several months. Apart from
the technical contributions made by these people,
the exchange of ideas gained by these close
working relationships has been of great value to

SDC and to the visiting personnel.

Another effective medium of communication is
the "lend-lease" program, instituted in 1966.
Similar to the internship program described above,
the lend-lease program enables technical special-
iste from outside agencies to work on SDC projects,
providing a valuable exchange of ideas between
these people and R&TD researchers. During 1966,
personnel from Shell 0il, Atlantic-Richfield,
IBM, and Bolt, Beranek and Newman joined R&TD to
participate in the development of projects in

data management and programming languages.

e i vt e e . e cre wenamie o

xiid ™-530/010/00

As is traditional in science and technology,
SDC makes a great efforq-ts communicate its
During 1966,
Division personnel published 60 articles in the

findings to the external community.

external literature; this was augmented by over
300 SDC documents, most of which are available

through the Defense Documentation Center.

Finally, R&TD personnel gave a total of 175 oral
presentations for professional meetings, university
In addition,

many members of the Division are officers in their

colloquia, and invited lectures.

professional societies and editors for journals
in their field.

Detailed information on all these activities
can be found at the back of this report.

Postdoctoral Fellowship Program
In the fall of 1966, R&TD instituted a Post-

doctoral Resident Research Fellowship Program.

Fellows selected under this program will receive

a $9,000 stipend while conducting res<arch of

their own choosing in the Research & Technology
Division in Santa Monica. Major resources available
to Fellows are the knowledge and experience of a
multidisciplinary staff of ecenior investigators,

and the facilities of a computer-based man-machimne

laboratory.

A representative, but by no means exhaustive,
list of areas that may be proposed for research
includes man-machine interaction, operations
research, mathematical modeling, digital simula-
tion, education and training, experimental gaming,
decision making, computational linguistics,
information management, computer graphics,
automata theory, formal and programming languages,
programming systems, and the application of informa-
tion processing to law, medicine, economics, and
other fields.

The fellowship pregram was developed partly as
a result of the successful experiences of NSF and
NIH fellows who have spent their research periods
at SDPC.

e e A s S MRS A At 2w e e i

TR

R e e

January 1967 siv

Research Advisory Committee

The Research Advisory Committee continued to
play an important role in the Corporation.
During 1966, the Committee met for four 2-day
sessions at Santa Monica (including a joint
meeting with the Board of Trustees) to consider
the work of R&TD and co offer broad guidance on
the overall program. During the year the RAC
focused on the follcwing areas: R&TD's operating
plan, the "augmentation of man's intellect" pro-
gram, education and training, and executive

systems.
»

In July, President Melahn announced the
rotation of the chairmanship of the RAC to
Dr. Merrill Flood, succeeding Dr. C. West
Churchman who had chaired the RAC since its
inception in 1962.

serve as a valued member of the Committece.

Dr. Churchman continues to
The

complete list of RAC members is as follows:

Dr. Merrill M. Flood (Chairman)
Professor and Senicr Research Mathematician
University of Michigan

Dr. William C. Biel (Secretary)
Associate Dean of the Graduate School
University of Southern California

Dr. C. West Churchman
Professor of Business Administration
University of California, Berkelev

Dr. Harry D. Huskey

Professor of Mathematics and Electrical
Englneering

University of California, Berkeley

Dr. Joln L. Kennedy
Department of Psychology
Princeton University

™-530/010/00

br. Anthony G. Oettinger
Professor of Mathematics and Linguistics
Harvard University

General Earle E. Partridge
USAF, Retired

Organization of Report

In the main, the report that fellows has been
organized to reflect the several threads of attack
indicated in the technigal‘overview. Iu cases
where a project belongs administratively under
one drea, but fitg funct lonally more clearly in
another, the functional relationships have
governed. Thus, the administrative structure of
R&TD, and in particular the organizational changes
that occurred late in the year, are not necessarily

reflected in the project descriptions that follow.

If it becomes increasingly difficult for us
to pigeonhole a gilven project--for example, to
judge whether the PLANIT language for on-line
lesson design belongs under education or man-
machine interaction or programming languages or
some other area--we take these multiple att.ach-
ments to be a healthy sign. Our aim is to
continue to break down the traditional barriery
imposed by different disciplines and skill fields,
with the goal of producing tools that draw upon
many areas of knowledge to fulfill a wide range

of uses,

Donald L. Drukey
Vice President and Manager
Research & Technology Division

n

B R R am oo

- v T TEeE T T TR W o R

T v Y T

(Cz €3 €32 €3

2

=
o

_
1

Tanuary 1967 1-1

T™M-530/010/00

£. H. Jacobs, Head

The Research & Technology Division's extensive
work in programming technology is being conducted
by several staffs. For purposes of this report,
these efforts have beun integrated in a siugle
section tictled “4dvariced Programming." Con-
stituting the major part of this section is the
work of the Programming Technology staff, headed
by E. H. Jacobs.

parts of the work of the Programming Systems

Also included are appropriate

staff (see also page 3-1), the Information
Processing Research staff (see also page 2-1i),
and the LISP development activity.

The area of Advanced Programming embraces study
and development of tools and techniques for the
computer programmer, the nonprogramming user of
computers. and the manager of computing installa-
tions. The major areas being explored are
compilers and programming languages, aids to
programmers, and studies of the programming

process.

The first of these, compilers and programming
languages, has been a major activity at SDC for
some years and the JOVIAL language snd compilers
have emerged as usable tools.
aims at finding new techniques of compiler pro-
duction and at increasing the language capability

available to progranmers.

In the realm of improved compilers, the
techniques of metacompilation are being studied,
as a possible means of reducing the time and cost
required to produce compilers. These techniqﬁes
have shown the capability to produce certain parts

of compilers, notably the so-called “front-end"

Continuing rasearch

which tramslates from source language to an inter-
mediate language and, in some cases, to machine
language. Both a metacompiler and a metalanguage
futerpreter have been constructed and are being
ueed to explore the problems of *"describing” a
compiler. The metalanguage interpreter has also
been used for other applications, including the

tranglation of one POL into another.

In programming languages, one current project
is aimed at extending LISP, an advanced list
processing language. List processing languages
have been found useful in work involving extensive
manipulation of symbols (as opposed to arithmetic
computation), but their utility has been blunted
by the slow speed of their processors and by their
limited capability to handle problems involving
both symbolic manipuiation and arithmetic computa-
tion. The LISP project is producing an advanced
processor, with a built-in computational facility.
One version of such a processor, called LISP 1.5,
was built during the year and used to test ideas.
Another version, LISP 2, is being built to imple-

ment these ideas in a complete system.

Exploration in another dimension, furnishing
new aids to programming, is being vigorously
pursued. The work includes finding aids that
help the vrogrammer to make better use of the
higher level languages, making it easier to get

programs written and assisting in code checking.

A major project in this area is the design and
development of an interactive programming support
system. Such a system will be designed to give

the programmer the maximum benefit of the on-line

January 1967 1-2

capability available in a time-sharing mode of
operation. Compilers and checkout tools specifi-
cally designed for a time-sharing environment

will have many more points of programmer inter-
action than are normally found, Further, the
language or control structure will be shaped to
allow the programmer to switch from function to
function (for examp®e, from a compile mode to a
debug mode) without having to make a‘corresﬁondtng

switch in language.

Several other projects are expected to contri-
bute to the interactive system. The work on
compiler construction described earlier will
provide the basis for the compiler used in the
system, Other contributing projects are Automated
Flow Analsis and Graphic fInput/Output., The first
of these is developing programs to analyze other
programs in order to get a wmachine-produced flow
chart. During the year, a program was written
that produces a series of flow charts from a
program written in JOVIAL. The first chart is
very detailed and successive ones present less
detailed information,giving a better overall
picture. A byproduct of this work was the
development of a program to automatically improve
code written in JOVIAL,

The Graphic Input/Output project is developing
techniques by which a programmer may write his

code directly into the computer (as opposed to

T™M-530/010/00

use of a teletypewriter or keypunch). Initial
work is on character recognition routines that
can operate rapidly enough to be useful in the
on-line environment. At the same time, routines
that display lines of code and make deletions and
insertions are being developed. Several experi-
mental recognition routines as well as parts of
the needed control programs have been written and
checked out on the Philco 2000.

Study of the program development process has
also been a significant activity. This research
ts aimed at systematizing and improving control
and planning techniques for use by managers of
computer program development. The work includes
analysis of the process of program development to
identify relationships among programming products,
resources, and environment. The goals are to
identify and develop economical and efficient
management methods for realizing programming
products and to establish criteria for measuring

the quality of these.

The central effort in this area has been the
statistical analysis of numerical data, character-
i{zing completed computer programs, to derive
improved methods for estimating costs. The work
has resulted in publication of a handbook for use
by managers in preparing estimates of a computer

program development project.

LA e D

ﬂ

g 1

i

‘

d

' i

d 1

' 4]

r
31

- P
1t f -
| iz

f l;

&3

January 1967 1-3

COMPILER CONSTRUCTION TECHNIQUES

Syntax-Directed Compilers and Translators¥

E. Book

Je. Igawa

M. Schaefer
D. V. Schorre

Description

The objective of this study is to develop
techniques that will simplify the task of pro-
SDC's
experience has shown .hat the 9 toc 12 months

ducing a compiler £-r a new computer.

currently required to produce a compiler for
command-control systems is a serious delay in the
production of operational programs. The use of
metacompilers has received much study by the
computer community and is the focus of this
project. This technique offers not only a pos-
sibility for comstructing compilers for new
wachines, but also a way to build compilers for

new languages.

The metacompiler makes use of a rigorous formal
description of the language for which a compiler
is to be produced. In addition, it requires a
description of the translation (or compilation)
process. (This description includes, either
explicitly or implicitly, a description of the

target machine language.)

The work has taken two major forms, called META
and METAS.

META is & compiler system which aczepts as input
a description of a desired compiler, in a special-
ized foim, and which outputs the desired compiler

in 30 executable form.

METAS is an interpretive system which consists
of the METAS language, a METAS compiler, and a
pseudomachine which is implemented on the Q-32
computer. The METAS5 language allows a variety of
data structures to be declared and used in the
language. It also contains some operations not

yet available in a system like META, but useful

*Suppdrted‘inmpart by the Advanced Research
Projects Agency.

R B ST NSO U O R S S U - S

T™-530/010/00

in data manipulation, e.g., relational and
arithmetic c¢perators; an assignment operator;

search, concatenate, enter operators; etc.

The META language consists of two sublanguages.
The first of these, called SYNTAX, is used to
describe the syntax of a desired source language,
specifying a mapping of a program in the source
language into a tree-structure representation.
The second sublanguage, called GENERATORS, spec-
ifies the correspondence of the tree structuvre
This is the
It is the
link between the string of marks input. to the

to a desired target language.

semantics of the source language.

computer (the source language program)and the
actions to be performed by the computex to

achieve th. desired result. This language is a
cross between a pattern matching notation and a
macro notation. It is a new language and will

be developed further. The two sublanguages are

‘nonprocedural or descriptive languages which are

specially designed. for the specification of

compilers and/or interpreters.

The subroutii.2s that do the work specified by
the SYNTAX and GENERATOR languages are written
in a language called MOL (Machine Oriented
Language). These routines could have been
written in any procedural programming language
such as JOVIAL, ALGOL, MAB, etc., or even in
assembly language. However, the MOL language
wag designed and a compiler for it implemented
for the reasons specified below.

First, MOL is based on a compromise. On the
one hand, it is desirable to take advantage of
the computer hardware in producing machine code
for various features of the language. On the
other hand, it is undesirable to descend to the
level of actual machine operations. MOL has an
ALGOL-1like €lavcy, but the operands and some

operators are concerned with machine registers.

Such things as indirect addressing, partial word

fields, user control of index registers, and
similar considerations are specifiable in this

A‘a’[*

e e

e A oG

Mo S

January 1967

language. MOL combines an assembler's vocabulary

with a compiler's grammar,

Second, it was felt that more control could be
exercised in adding features that wouid mesh this
language into the META system if it were specifi-

cally designed and implemented for that purpose.

Third, since MOL is a procedural language, it
provides an early test of the ability of the

system to describe a conventional compiler,

Progress

The SYNTAX and GENERATOR languages were designed
and a description of the syntax of both languages
was written in SYNTAX. This also showed the
mapping into the internal model (tree structure).
‘ihe‘mépping‘of the internal model to Q-32 code
was described for both SYNTAX and GENERATOR in
the GENERATOR language.

The procedural language MOL-Q32 was implemented
in an earlier version of META which did not have
the generator language. The subroutines required
to implement SYNTAX and GENERATOR were written
in MOL-Q32. This resulted in the entire META
system being described in its own language and
able to compile itself. This process was actually
performed by bootstrapping from a more primitive
version of the system.

A MOL for SDC's S/360 System was designed and
a compiler for it was described in META. The
GENERATOR portion of META was changed to produce
IBM 360 code, instead of Q-32 code, from the
internal‘modé}. The resulting version of the
META system for the 360 is currently being checked
out, ‘The‘bootstrap‘process to move from one
computer to another is very well defined using
this method.

The METAS system has been useful in describing
POL-to-POL translations (p. 1-5), data base con-
versious, some analysis of a subset of English
as used in questions, etc. Specifically, JTS-to-
JS, TINT-to=JTS, J3-to-JS, FORTRAN-to~JTS, and

JS-to~PL/I conversions have been accomplished.

ot it B e i i o < T et

1-4 TM-£30/010/00

Variouc data bases have been convertel for the
LUCID system (p. 4=7). The METAS system has also
been used to reforwmat METAS programs and to write
the METAS compiler, A calculation program and an
input processvr for JOVIAL constants have been
written in META5. The last two uses were of
rarticular interest since they were written for
on-line interaction between the user and the

computer.

As the METAS system became a working tool for
POL-to-POL translation, the META5 language was
expanded to facilitate string and character
manipulation. The METAS system is currently
being moved to the $/360 computer and, since the
METAS language is totally machine independent,
programs written for Q-32 METAS will run with no
modification on the 360, The J3-to-J$ translator
was used to bootstrap the METAS system over to
the J§/360 dialect of JOVIAL,

Plans

While the METAS system is being moved to the
5/360, improvements will continue to the language
and system as needed. Tree-building and manipu-
lation capabilities may be added along with
multiple input/output capabilities, to pevmit
the production of compilers. Pebugging capabili-
ties will be made available. Study will be made
of the feasibility of partial recompilation of
METAS5 programs. More POL-to-FOL translators will
be written including a PL/I-to-JS translator.

The META system is also being moved to the
$/360. When this is completed, improvements will
be made. One planned improvement is the addition
of a feature to describe and handle a dictionary
containing information about data types. The
GENERATOR language will continue to be developed,
Afte. this, work will split into two‘directioﬁs:
(1) further investigation of metalanguages and
procegsors, and (2) the use of META to produce
compilers and interpreters for various non-

procedural languages for experimentation.

st L b e Bt B L R ST e S e 2T e e S e et e e e Y

K" A A e et A

g

. |

D

l

e . A

January 1967 1-5

Project Documentation

1. Oppenheim, D. K. The METAS5 language nad
system. SDC document TM-2396., July 21, 1965.
49 pp.

2. Book, E. and Schorre, D. V. A higher-level
machine-oriented language as an alternative
to assembly language. SDC document TM-3086/
001/00. August 12, 1966. 29 pp.

3. Oppenheim, D. K. and Haggerty, D. P. METAS:
A tool to manipulate strings of data.
Proceedings of the 2lst Natinnal ACM
Conference. August 1966, 465-468. (Available
as SDC document SP-2243/000/01.)

Iranslation Between Procedure-
Oriented Languages

D. P. Hanz vty

Description

A major difficulty hindering the introduction
of improved procedure-oriented languages (POLs)
into an established computing facility is the
incompatibility between the new or improved
languages and older languages long in use. It is
often desirable to modify old programs by using
the new language or to combine routines written
in the old language with routines written in the
new one. One method of minimizing this difficulty
is the design of translation programs between old

and new POLs.

This project is exploring the possibilities and
limitations of automatic translation of one POL

into another,

Several programs designed to accomplish a
translation from one POL to another existed at
the inception of this project--an SDC program to
translate FORTRAN II to JOVIAL (J2) and an IBM
FORTRAN II-to-FORTRAN IV translator. Two others
were being programmed--a TINT-to-JTS translator
and a JTS-to-JS translator.

The first two translators were produced using
""traditional" methods, i.e., they were written
in the conventional programming languages J2 and
FORTRAN, respectively; in contrast, the latter
two transiators were written in METAS, a syntax-
directed compiler-writing system (see page 1-3).

D RSNV S AT PN SO ST S

T™-530/010/00

The languages selected for translation in this
particular study were JOVIAL (JS version) and
PL/I (i.e., a JS-to-PL/i translator) and the METAS

system was selected to vealize the translator.

The language pair was chosen because both would
be available on IBM System/360 and a POL-to-POL
The METAS

technique was selected because a TINT-to-JTS

translator would have practical value

translation was partially implemented at the time
and seemed to indicate that the method could be

applied to the more complex JS-to-PL/I translatiom.

Progress
At present, the translator is operating on the

0-32 under the Time-Sharing System.

The translator was written in the METAS language
and debugged on-line under the Time-Sharing System.
The use of the METAS language facilitated the
writing of the translator in several ways; the
specification of the syntactic recognition process
for the various JS forms is not only precise and
transparently explicit but also succinct. The
transformational processes necessary to produce
the PL/T equivalents are also expressed quite

clearly and briefly.

The language specifications as a basis for
writing the translator were, for JS: SDC TM-1682/
003/00, JOVIAL (J-6) Grammar and Lexicon; and for
PL/I: 1IBM, File No. $360-29, FORM €28-6571-3,

IBM System/360 Operating System PL/I Language
Specifications.

Although it is assumed that the JS input text
has been found syntactically correct by the
‘generator' phase of a JS compiler, the philosophy
adopted with respect to the translator has been
to produce as complete a translation as possible
no matter how incorrect or garbled tire input text
may be; hence non-JS program segments will produce
output, e¢.g., J3 programs will translate although
usually incompletely.

The translator has converted a JS program that
was designed to test the ability of a JOVIAL

The PL/I

equivalent’ of this program has been submitted to

compiler <o compile a JS program.

IBM for syntax-checking by that part of the PL/I
compiler; the program consisted of about 315
A much
larger J3 program (about 1800 statements and 250

statements and 120 data declarations.

data declarations) has also been translated; this
translation should give an indication of how
useful the translator is for translating J3
programs (for which it is not designed),

i.e., how difficult the postediting job is.

Several PL/I translations have been compiled
by the F-level compiler and have revealed errors

in the translator.

The project has noted several aspects of pro-
gramning languages that add to the difficulty of
translation (these remarks also apply to the
compilation process): (1) any ad hoc devices
that a particular compiler uses to "fit" a
language to a machine constrict the translation
process; (2) the existence of structural cone
nectivity (see E. T. Irons, "Structural

Connections in Formal Languages,' Communications

of the ACM, Vol. 7, No. 2, pp. 67-72, for an

exposition of this concept) in a language adds
a considerable burden to a translator, and hence

should not be introduced unnecessarily.

The METAS system is being converted to the IBM
System 360. When this is completed, study of
translation techniques will continue through the
application of METAS to other language pairs.

In particular, a PL/I-to-JOVIAL translator offers

a promising research avenue.

Project Documentatiocn

1. Haggerty, D. P. Use of the JS to PL/X
translator. SDC document TM-2823. January 19,

2- Haggerty’ D‘o ‘Po
METAS system.
1966. 18 pp.

- JSPL: An application of the
SDC document TM~3003. June 14,

- T e - - T e TR T - ST i T e I S
’ _ .
January 1967 1-6 ™=530/010/00

Compiler Techniques for Pagingk

R. J. Dinsmore

Description

The goal of this project is to‘éstablish the
compiler techniques for producing computer code
that takes advantage of "page" and "segmentation"
features of new computers such as the IBM 360/67
and the GE 645,

When the current generation of compilers was
designed, computer memories generally consisted
of a single block of locations whose addresses
were simply a continuous sequence from zero to
the highest available. The new computers, however,
subdivide memory into sma?' « blocks called
"pages" and '"segments," and it appears that
special compiling techniques are needed to properly
utilize these features. That is, compilers must
produce computer programs that will take advantage
of the small blocks of memory and minimize the
number of times a process is interrupted for the

loading of new pages or segments.

Other SDC projects (Automatic Code Improvement
and Automatic Flow Charting) have shown that the
generator phase of a compiler can obtain a great
deal of information about the structure of a
program, and it is anticipated that this is the
kind of information useful in the paging problem.

Progress

The work plan on this project consists of a
study of an existing compiler, the construction
of a compiler that includes the new techniques,

and a study of gains realized,

This project was instituted *ite in the year
with a study of the JOVIAL compiler for the
IBM 360 and some of its output code. A number
of possibilities for structuring a program have
been hypothesized and are being considered

for implementation in a compiler. Also the

tSﬁpﬁbftéafbyiihe Advanced Research Proijects
Agency.

T

T
ANt R

|
o
.
¢
a
P
3
4
IJ
ORN
A

{
=

January 1967 1-7

differences in design between existing compiiers

and a paging compiler are being investigated.

In addition to the program structure itself,
two additional techniques are being considered.
One of these is to have the program utilize
statistice on its own past behavior in loops and
at branch points. The other technique is to have
the program furnisiv notice of its future page

needs to the executive.

Plans

Work will continue to find more potentially
profitable ways in which programs can be
structured. An experimental cempiler will be

built to test each of these techniques.

PL/I for SNC 360 Time-Shariug System

W. BE. Meyer

Degcription

The purposc of this project is to investigate
the difficulties involved in moving a compiler
from one third-generation operating system to
another., Specifically, the project is investi-
gating the transfer of the PL/I F-level compiler
from the IBM 0S/360, a system designed for
multiprogramming, to the SDC 360 Time-Sharing

System,

The dependence of compilers and assemblers on
operating systems has been increasing over the
ltaat ten years., This increasing dependence
implies greater difficulty in transferring
With the

advent of multiprogramming systems, this depen-

compilers from one system to another,

dency is increased substantially because of the
desirability of dynamic relocation, standard data
structures, and flexible and dynamic linking of

program segments.

Because of the widespread interest in PL/I and
becauvse of its potential usefulness in the SDC
Time-Sharing System, PL/I was chosen as the
object of this study.
with the IBM 0S/360; the SDC 360 System is

It was written to operate

T™=-530/010/00

sufficiently different that the transfer require-

ments are significant.

Progpress

A list of probable problem areas was developed.
They are:

1. The compiler interface with the operating
system,

2. The compiled program's interface with the
operating system.

3. The form of the compiled program as output
by the compiler.

4. The form of data aggregates (e.g., files,
records, data sets, control blocks, etc.) recog-
nized by the operating system and the compiler.

5. The differences in input/output procedures;
this is related to 4, above.

6. Dynamic (execution time) calls on the
(This may be unique with 05/360.,)

7. Possible side effects introduced in moving

library.

support programs from one operating system to

another.

In the latter part of the year, Program Logic
Manuals for the PL/I compiler and the PL/I library
were received from IBM, and a study of the compiler
and the library was begun, All compiler inter-
facing with 0S/360 is contained in six control
programs. All references to 0S/360 in these
rontines have been identified. There are 62
calls, generated by 19 different system macros.
This list of references will be used as a basis

for the evaluation of the problem area 1, above.

With respect to the object program's interface,
the PL/I compiler does not generate code that is
operating-system dependent; all operating system
interfacing is isolated in the PL/I library.
There are 17 library routines using 20 system
macros that supply the object code interface
with the operating system. These macros are,
for the most part, the same as those used in the
compiler-0S/360 interface.

The form of the output program is not a problem

in the case of PL/I since the "object module" that

January 1967

is vutput must be processed by the linkage editor,
which outputs a program in a form readable by the
loader. The need for link-editing arises because
all memory allocation, data management, data
conversion, and input/output processes have been
placed in the PL/I library and the library
routines must be linked to the objact program

by the linkage editor.

The study of the problem areas will be con-
tinued. The variances between the 08/360 and
the SDC 360 System data aggregates will be
tabulated and the differences between the two

system interfaces will be evaluated,

PROGRAMMING IANGUAGES

LISp 2%
SDC: J. A. Barnett III: L. Hawkinson
Project Leader M. I. Levin
D. C. Firth P. W. Abrahams
R. E. Long D. Crandal
E. Book R. A. Saunders
R. E. Martin E. C. Berkeley
c. Weissman
S. L. Kameny

Description
The LISP 2 Project is a joint development of

SDC and‘Information‘International, Inc.

LISP 2, which is based on LISP 1.5, is a new
programming language for manipulating complex
data structures and performing lengthy arithmetic
calculations. As in LISP 1.5, programs can be
treated as data, and storage can be regained
through a compacting technique known as "garbage
collection," The LISP 2 Source Language (SL),
which resembles ALGOL, is the standard input;
the LISP 2 iIntermediate Language (IL), which
resembles LISP 1.5, is used for programs that are
to e treated as data., Type declarations are
available for efficient compilation of arithmetic
operations. LISP 2 includes bit operators and an

open subroutine capability. The most general form

*Suppdrtedﬁby the Advanced Research Projects
Agency.

1-8

™-530/010/00

of a datum is a symbolic expression; other forms
include numbers, functions, strings, and iuteger-
indexed arrays, All of the system programs are
themselves written in LISP 2. The 1/0 package
transforms input inte a stream of characters which
are converted into tokens by the fiunite-state
maching., The supervisor controls the various
SL is tramslated into IL by

the syntax translator; IL is trauslated into

LISP .2 operationms.

agsembly language by the compiler; and assembly
language is translated into machine language by
the LISP 2 assembler, LAP, Machine mobility is
achieved through core image generation. (See

Figure 1-1.)

Pregently implemented on the Q-32 computer,
LISP 2 has two components: the language itself,
and the programming system in which it is embedded,
The system programs that define the language are
accessible to and modifiable by the user; thus
the user has an unparalleled ability to shape the
language to suit his own needs and to utilize
parts of the system as building blocks in con-

structing his own programs.

While it provides these capabilities to the do-
it-yourself programmer, LISP 2 also provides the
complete and convenient programming facilities
of a ready-made system. Typical application areas
for LISP 2 include heuristic programming, algebraic
manipulation, linguistic analysis and machine
translation of natural and artificial languages,
analysis of particle reactions in high-energy
physics, artificial intelligence, pattern recog-
nition, mathematical logic and automata theory,

automatic theorem proving, game playing, infor-

mation retrieval, numerical computation, and

exploration of new programming technology.

The LISP 2 programming system provides not only
a compiler, but also a large collection of run-
time facilities. These facilities include the
library functions, a monitor for control and on-

line interaction, automatic storage managemwent,

P

T T T T T T T T e T ey

January 1967 1-9 T™-530/010/00
PATTERN. [R $-EXPRESSION) TOKENS
‘ I \ $-EXPRESSION [* 1
{ I ‘ | |
COMPILEK | | Reaper CONTROL |
] r’ |
LAPCODE | CONTROL | |
PATTERN- Lisp 1 I | -—-——---CO';’;'::LS FINITE-
| AssemBLY | AP I SupeRVISOR pelb I} SYNTAX TOKENS | STATE |
DATA | eroc CODE ‘ | TRANSLATOR [* ‘ |
maNtpuLator| | PROGRAM ; 1 " | | machne §
¥ T
00?.{‘“ l CONTROL 1
| | I i
\ ‘ | ! A []
l f | 1 S-EXPRESSION |] CH“RACTERS
| coxe | f&é‘e l | | | | ‘ ‘
l | GENERATOR | L | erNT |CHARACTERS J /g |
I | | i |
, CONTROL T
| ‘ I |
FACILITIES [LIBRARY FUNCTIONS] l
| |PrimiTIvES] — 1
I Time-
[GARBAGE COLLECTOR | sHarnG ‘
| moniTor |
[META-COMPILER | | —

il

FIGURE 1-1.

LISP 2 SYSTEM COMPONENTS AND INFORMATION FLOW PATHS

T T T T

>

January 1967

and communication with the monitor system of the

machine on which the system is operating.

A particularly important part of the program
library is a group of programs for bootstrapping
LISP 2 onto a new machine. (Bootstrapping is
the standard method for creating a LISP 2 system
on a new machine.) The bootstrapping process,
achieved by the technique of generating a complete
LISP 2 core image on the target wachine (core
image generation), represents a major milestone
The LAP

assembler, a part of the core image generator,

in the implementation of large systems.
produces relocatable binary code. During the
bootstrap process, this code is assigned an
absolate core address and relocated as necessary
as if it were being loaded. Associated data
structures are assigned locations and their binary
core images generated. The code, data structures,
and binary images are then placed on an external
output device such as magnetic tape. The boot-

strapping capability is sufficiently powerful so

that the new machine requires no resident programs

other than the standard monitor and a non-
relocatable binary loader to read the tape

produced.

LISP 2 includes and extends the capabilities of
its ancestor, LISP 1.5,which is notable for its
mathematical elegance and symbol-manipulating
capabilities. However, LISP 1.5 lacks a con-
venient input language and efficiency in the

treatment of purely arithmetic operations,

LISP 2 was designed to maintain the advantages
of LISP 1.5 while remedying its deficiencies.
The first major change has been the introduction
Source Language
The two

of two Jdistinct language levels:
(SL) and Intermediate Language (IL).
languages have different syntaxes but the

same semantics (in the sense that for every SL
program there is a computationally equivalent IL
program). The syntax of SL resembles that of
ALGOL 60 while the syntax of IL resembles that of

LISP 1.5. 1IL is designed to have the same

1-10

™-530/010/00

structure as data, and thus to be capable of being
manipulated easily by user (and system) programs.
An advantages of the ALGOL-1like source language is
that the ALGOL algorithms can be utilized with
little change,.

The second major change has been the introduction
of type declavations and new data types, including
integer-indexed arrays and character strings. At
a future time, packed data tables, which can
presently be simulated through progeamming
techniques, will be added. Type declarations are
necessary to obtain efficient compiled code,
particularly for arithmetic operations, but by
using the default mechunisms (whereby the system
automatically makes type declaratiomns), a pro-
grammer may omit type declarations entirely
(albeit at the cost of efficiency).

Figure 1-2 shows an example program, called
RANDOM, in its Source Language format, in the
equivalent Intermediate Language program as
produced by the syntax translator, and in the LAP

output from the compiler.

Progress

A first LISP 2 system was implemented on the
Q-32 and demonstrated in May of 1966. The
LISP 2 Intermediate Language (IL) was used for
all programming of LISP 2 including the system
primitives; IL was found to be powerful enough
so that little or no machine language or assembly
language code was required. A few minor changes
were made in IL on the basis of experience
The

gen-

obtained by project personmnel in using IL.
system was produced through the core image
eration process using LISP 1.5 on the Q-32 as the
bootstrapping vehicle. A syntax translator for
translating from source language to IL was written
uging metacompiling techniques (see page 1-3).

A gimple pattern matching routine and a LISP
"pretty print" have been programmed in LISP 2

to aid in system checkout. Also, several
extensions to LISP 1.5, including a context

editor, were required.

(7

*E

B
Fa

I
b .
—

- —

— T - — - e _— J— A A"H”GJ
January 1967 1-11 T™-530/010/00 l
N ‘
U |
<SOURCE LANGUAGE> <Q-32 LAP LANGUAGE>
; - REAL SECTION TEST: (LAP |
| ’ %R RANDOM COMPUTES A RAND(M NUMBER IN (FUNCTION ((RANDOM . TEST) REAL)
} - %R THE INTERVAL (A,B) ((A REAL LEXICAL VALUE)(B REAL LEXICAL VALUE))
| z\ E DECLARE (¥-1) INTEGER OWN Y: (STF TOP.) ‘
| REAL FUNCTION RANDOM(A,B): (BEGIN) |
DO ¥-3125*Y; (LDA (Y . TEST)) "
| Y-Y\67108864; %R \ DENOTES REMAINDER (MUL 3125 (L567.7 R S)) :
a RETURN A+Y*(B-A)/67108864.0; (ARGS) |
i E.iD; (STB PUSHA.)

(LDA (NUMBER 67108864) S) 1

e TR (-r i
»

<INTERMEDIATE LANGUAGE> (CALL (REMAINDER . LISP))

(SECTION TEST REAL) (STF (Y . TEST))

(DECLARE (Y INTEGER OWN 1)) (LDC A) ;
(FUNCTION (RANDOM REAL) ((A REAL)(B REAL)) (FAD B)
d (BLOCK () (FDV (NUMBER 67108864.0)) 4‘
(SET Y (TIMES 3125 Y)) (FMP (Y . TEST)) }
(SET Y (REMAINDER Y 67108864)) (FAD A) ;
% (RETURN (PLUS A (TIMES Y (END) :
4 (QUOTIENT (DIFFERENCE B A) 67108864.0)))))) (RETURN)) |
(((REMAINDER . LISP) FUNCTION 1

(FUNCTIONAL INTECER INTEGER INTEGER)VALUE)

((Y . TkST) OWN INTEGER VALUE))

TEST)

A

FIGURE 1-2. A SAMPLE LISP 2 PROGRAM IN SL, IL,AND LAP

‘

e I S VR

e
i ;

e

S v

N At

SN

P e

January 1967

Plans

The Q-32 LISP 2 system will be polished and a
mechanism for swapping binary programs from disc
storage will be Installed. An operational Q-32
system will be completed in the first quarter

of 1967.

Implementation specifications for putting
LISP 2 on an IBM 360-1like machine will be written.
Multiple register usage, virtual memory manage-
ment, and paging techniques will be included in

the design work.

Several problem areas need to be resolved.
The first is that LISP 2 must be polished to
reduce its size, Also, the swapping mechanism
has been designed to help alleviate this problem,
particularly ia view of future "page-turning"
operating systems. 7%he second problem involves
finding a target system to which LISP 2 may be
bootstrapped. Neither the IBM 360 nor the PDP-6
time~sharing system has progressed fast enough
to be used as an operational vehicle ior LISP 2.
Lacking a stable, reliable time-sharing environ-
ment, mobility of LISP 2 onto other systems is

being compromised.

Pro ject Documentation

1. Abrahams, P. W. (III), Weissman, C. (SDC),
et al. The LISP 2 programming language and
system. SDC/III document TM~-3163.
September 26, 1966. 28 pp.

2. Kameny, S. L. and Weissman, C. ‘The Q-32
LISP 1.5 mod. 2.6 system: Operating syscem,
input-output, file, and library functions.
SDC document TM-2337/103/00. April 11, 1966.
27 pp.

3. Levin, M. I. and Berkeley, E. (III). LISP 2
primer. SDC document TM-2710/101/00 (Draft).
July 15, 1966. 165 pp.

4. Firth, D. C. and Kameny, S. L. Syntax of
LISP 2 tokens. SDC document TM-2710/210/00.
August 25, 1966. 11 pp.

5. Kameny, S. L. (SDC) and Hawkinson, L. (III).
LISP 2 intermediate language. SDC document
T™-2710/220/01. July 5, 1966. 56 pp.

6. Barnmett, J. A. SIM, an s-expression pattern=
matching function. SDC document TM-2710/260/
00. June 29, 2966h. & pp.

T™M-530/010/00

7. Saunders, R. A. (III), Barnett, J. A. and
Firth, D. C. (SDC). The LISP 2 compiler.
SDC document TM-2710/320/01. February 1, 1966.

55 pp.

8. Book, E. The LISP 2 syntax translator. SDC
document TM-2710/331/00. April 15, 1966.
27 pp.

9. Howard, M. V. Operating instructions for the
LISP 2 supervisor in the LISP 2 core image.
SDC document TM~-2710/510/00. October 14, 1966.
5 pp.

Data Base Oriented Programming Language®

E. B, Foote
R. G. Howard

Description

Data management systems, such as LUCID (see

p. 4-7), have several features distinctly different

from procedure~oriented compiler systems such as
FORTRAN or JOVIAL. The first is the English-like
restricted language of the former. This language
is valuable because it is user-oriented and easily
learned. However, it lacks certain power inherent

in the procedure-oriented languages. The second

difference--not as apparent to the user but equally

significant-~-is t'e organization of the data in
storage. Although languages like FURTRAN and
JOVIAL allow flexibility in what is stored, and
in the hierarchical structure between data
elements, they put the material away, in core or
tape or disc, in a relatively rigid format. Data
management systems like LUCID, on the contrary,
have a very flexible format, dictated by the data
it~elf. The goal of this project is to study the
possibility of obtaining in one system the power
of the procedure-oriented language and the capa-
bility offered by the data structure used in the

data base management system.

Progress
The language is being investigated in the
context of SDC's Time-Shared Data Management

System (TDMS)--(see p. 4-9). The first step has

*Supported‘gy the Advanced Research Projects
Agency.

=
B

January 1967 1-13

been to study the possibility of building a
convendent bridge for the user between a data
management system and a procedure-oriented
language; that is, to enable a user who has

built a data base using the manipulative features
of TDMS to use the same data base for more exten-
sive computations. For example, a user who has
built and used an inventory of bomb components
might wish to use linear programming to determine
the most bombs he could build out of components
in his inventory. Such a lengthy computation
exceeds the capacity of TDMS. The user would
need to use something like JOVIAL but would
prefer not to have to convert his data base to

a new format.

The use of the TINT* system on the Q-32 computer
was considered as the procedure-oriented language
base since TINT is more readily modifiable than
available compilers. Several new language forms
were devised to carry data back and forth between
the formats of TDMS and TINT. However, taking
material from the tree structure used in TDMS
into tabular format of TINT can result in wasting
of a great deal of space, because the tree
structure does not allow space for absent ele-
ments while the table must allow space for the
largest potential entry. Other approaches were
considered and several appeav promising. One of
these is to add a facility to a compiler such as
JOVIAL that would enable a user to get elements
from a data base as he needs them. Then the
user can perform computations on the elements
immediately or construct tables based on his

knowledge of the data.

The JOVIAL compiler for SDC's $/360 Time-
Sharing System will be studied to determine if
it can be matched to the data retrieval package

cof the TDMS system, If this appears feasible,

*Teletype INTerpreter--an on-line assembly-
oriented language system.

™-=-530/010/00

the compiler will be modified to furnish a vehicle

for experiment and further development.

AIDS TO PROGRAMMING

Interactive Programming Support System*

M. B. Bleier
H. Bratman
E. R. Clark
J. S. Hopkins

Description

The goal of this project is to develop a pro-
gramuing support system that (1) takes advantage
of the intevactive capability of time-shared
systems, (2) facilitates the programmers' work
by providing an integrated capability in system
language, information, and function, and (3) makes
advantageous use of a tabular display in program
composition, program editing, program debugging,

and program and system documentation.

Among the functioms that will be provided in
the system are:

Program Composition: Original preparation of
source-ianguage program

Alteration (temporarily
or permanently) of
source-language program

Maintenance of program
and data files

Program Compilation: Grammar checking
Partial recompilation

Compilation of optimum
object code

Display of variables that
are selected by symbolic
name

Program Testing:

Symbolic alteration of
values of variables

Tracing

Assistance in preparing
and storing data for

program parameter testing

Display of variables

controlled by conditional

statements

*SﬁppoéiédVinipart by Rome Air Development Center.

January 1967

Production of "set-used"
information and glossary
of names used in the
program

Documentation:

Reformatting of source-
language program text

Production of flow charts
containing variable
levels of program
details

Assistance to user in
learning the system
The system is designed to give the user an
integrated language for the program production
processes of composition, editing, compilation,
execution, testing, and documentatim. The
commands for performing a particular action are
all in the same format, even though the action
may occur in different functions. For example,
once ; programmer has learned the commands to
sinsert and delete statements in a program, he
is able to perform simple kinds of file mainte-
ngnce without learning new or contradictory

commands.

Also, in developing a program, the user will
deal with only a single entity, the system itself,
instead of being concerned with a conpiler, an
editor, a debug package, etc. He can perform
actions as needed without awareness that difterent
functions are being used. For example, if the
user gives a command to execute a program and
that program has not been compiled, the system
will compile it Ior him. The system is designed
for programmers rather than problem solvers.
However, the system and its language are designed
to be learnable in steps, so that a novice with
a simple problem would need to ilearn only a small

part of the system.

In addition to providing an integrated language,
the system exploits the capability of time-shared
interaction, especially during compilation,
During compilation the compiler usually makes
some arbitrary decisions. For example, when
there are more index variables than registers,

the compiler uses predetermined rules to assign

1-14 M- 530/010/00

registers. In an on-line, interactive situation,
the compiler can ask the programmer for advice.
If the programmer has information about the
frequency of use of some or all of the indexes,
the compilez‘can use this information to make

more efficient assignments.

Another feature of the system is improved
coordination of programs, providing better
service to the user. Increased efficiency in
operating time is expected, because programs
within the system do not regenerate information
that has already been computed. In particular,
the compiler provides a great deal of information
that is useful in debugging. An example ig the
dictionary generated during compilation, which is
currently being used by some dcbugging routines.
The flow chart and glossary programs need much
the same information about the structure of a
program generated by a compiler with line-at-a-
time or partial recompilation capability,

Figure 1-3 shows the relationship between system

components.,

Progress
Investigation is proceeding along three paths:

. Design of the system language and the
techniques of user-system interactions.

. Design of the system functions that support
the system capabilities.

. Design of system control and program

integration.

1. Design of the System Language. The conver-

sational requirements of various components of
the system, such as program composition, compila-
tion, testing, and documentation are being
studied.

an integrated language is being developed. The

As the requirements are formulated,

development of the system design concurrent with
the language design ensures that the system
contains all the capabilities implied by the
language. A document has been published that
describes the system from a user's point of

view [3].

sl ‘

AAT
i
zioibil3

=

January 1267 1-15 T™-530/010/00
Normal Activitics Alds
Qg ,,,f
i‘ Programmer
£ System 7 | Teachi: “
f} | y Teaching ’;
. (The progremmer commwicatec (Programmer is “
1 1with & control program which | - instructed in ‘ !
| ‘selects a subroutine to per- | - correct techniques‘ %
form the functiions requested.) - to be used.) | } |
— e — m——— - - — 1 1
| I 1 i
A ‘\‘ | ‘
1 Editing Documentation j
i _ §
) | (This function performs file \\ (Set-used listings, ‘\‘
== maintenance, prepares input 1 program listings, and i
L ‘ for other routines and pre 1 flow charts are pre- “
' _pares output. 2 “7tpareg.7)l) ‘
Compilation
{Tuis fuuction selects the | ‘ — e
compiler requested by the | ___ Debugging
| programmer for this run.) | |
m | e —— ‘ ' (Current values of variables |
| t - are inspected and the path |
‘ I | — — — | followed through the programi|
6—»' Execution [is aispleyed.) |
L I —
]
Program Information
| _ (This information is generated by
™m various subroutines for use by every |
‘{ function on this chart.)
E FIGURE 1-3. COMPONENTS CF THE INTERACTIVE PROGRAMMING SUPPORT SYSTEM

January 1967

2., Design of Various System Functions and
Tables.
being checked out on the Q-32.

A version of the syntax anmalyzer is
This component
performs the following functions:

. Analyzes syntax of all inputs to sece if they
are correct and indicates location of error if
they are not.

. If the input is a system command, encodes it
in binary and searches the dicticnary for any
variable names in the command.

. If the input is a JOVIAL statement, removes
redundant blanks from the statement and makes
entries in the dictionary for wvariables used or
defined.

The syntax analyzer is being written in JOVIAL
and uses techniques developed by the META and
METAS5 metacompilers {(p. 1-3). This will result
in an efficient program that can be easily

modified for changes in input syntax.

Formats that facilitate the attaching and
detaching of program units and system commands
to the main body of the program have been
proposed for the Text Structure Directory (TSD)
and the Program Structure List (PSL).
have been devised to attach, locate, and trace

program units in the proposed TSP format. A

scheme to encode system commands, consistent with

the proposed TSP format, has been devised.

Research is being conducted in the area of
partial recompilation, which combines the
problems of program editing and incremental
compilation with those of modifying executable
programs. The program text is maintained in a
list form to facilitsate program editing. State-
ments are compiled into independent subroutines
whose computation sequence is described in tke
PSL. An execution nonitor is being designed to
operate on the output of the compiler. This
component executes the independent program
segments in the proper sequence and directs the
operation of any program test requests made by
the ‘'user.

Algorithms

1-16 TM-530/010/00

3. Design of System Control and Program Inte-
gration.
control are¢ being designed to operate within
SBC's S$/360 Time-Sharing System.

Time-Sharing System is under way to determine

A central controller and input/output

A study of the

its optimum use with the Interactive Programming
Support System. A prototype controller will be
written to operate on the 360 with dummy system

components.

Work on the Interactive Programming Support
System will concentrate on completing the system
design and building the framework of the system.
The aim will be to build a mockup of the system,
with certain parts "running' and certain parts
only represented, in order to meet the various
The emphasis will be

on developing the system language and showing the

constraints oen resources.
forms of user interaction. The aim is to gain
experience in wusing the system and testing the
effectiveness of the program composition and

editing language and furction.

The tasks to be worked on in the immediate
future include:

. Development of the system language.

. Pesign and construction of the program
composition and editing programs.,

. Completion and revision of the syntax
analyzer.

. Design and construction of the system control
program,

. Modification of the existing JS $/360 compiler
to be operable under the control program, match
the output of the editing program, provide some
interactive capability, and match existing testing

programs.

Project Documentation

1. Jacobs, E. H.
support system.
January 1, 1966.

An interactive programming
SDC document TM-2819.
“ \p‘p .

2. Beeler, R. G., Jackson, C. W., Hopkins, J. S.
Interactive programming
SDC document TM-2819/001/00.

9 \PP.

and Jacobs, E. H.
support system.
February 21, 1966.

e ey Ty YT T O T I

T o

M

[P SN NSO S NP SR TS S Sy S U Y |

1-17

January 1967

3. Bratman, H. and Hopkins, J. S. Initial design
specifications for the interactive programming
support system. SDC document TM-2819/002/00.
July 20, 1966. 54 pp.

Automated Flow Charting

L. Fine

The flow chart is a traditional programming
tool used in program design, production, checkout,
maintenance, and documentation. It provides a
means for correlating what a program actually
The level of

detail desired in a flow chart is a function of

does with what it is meant to do.
its intended use. For some purposes a general-
ized flow chart, piving an overview of a program,
is most useful, whiie for other purposes a
detailed flow chart, giving the exact flow of

a program, is most appropriate. However, the
production and maintenance of such flow charts
is often in itself an overwhelming, and hence
rather neglected, task. For this reason, a
program that takes a symbolic program and from
it automatically produces multilevel flow charts
can serve an important purpose. In addition to
relieving the programmer of the tedious aspects
of flow diagramming, such a program produces
flow charts that have a consistent degree of

accuracy and a standardized format.

This project is developing a method for auto-
matically producing multilevel flow charts. The
most detailed flow chart is first produced and
then, by iteratively applying a set of algorithms,
it is successively condensed to produce flow

charts at various levels of detail.

Progress

As a start on the problem of analyzing symbolic
code, a program (SURE) was written which would
take a program written in JIS (JOVIAL for Time-
Sharing) and produce complete set/used infor-
mation. This program was then augmented to
perform more detailed analysis and was found to

That

be useful in improving the symtolic code.

T™-530/010/00

is, SURE can reformat a program so that it will
be shorter and will execute faster. This work
appeared so promising that a separate project
aimed at automatic code improvement was started
(see p. 1-2i) while the automatic flow charting

work continued.

.. method of producing multilevel flow charts
has been implemented in JOVIAL.
operating on the Q-32 computer, and will be
adapted to operate on SDC's $/360 Time-Sharing

It is currently

System,

written in a subset of JOVIAL, determines thie

The program takes a source program

function of each source program statem~unt, and
assigns to each statement (other than a branch-
type statement) a separate box that indicates
its function. Text that describes the action of
the source statement is placed in each box, and
flow information is associated with each box.
Finally, certain adjacent boxes are grouped
together, thus producing the most detailed flow

chart.

A study of the number of entries to, and exits
from, ecach box, as well as some information about
program flow, indicated that certain configurations
of boxes can be grouped together without essen-
tially altering the picture of program flow. This
study led to the development of a set of seven
rules that, when applied to the flow chart,
condense it by grouping together certain config-
urations of boxes and thus produce a more general-
ized flow charit. By reapplying the rules to this
flow chart the next-level chart is produced. The
seven rules specify how different boxes are
combined, how the text is modified, and how the
flow information is updated. Initially, simple
program structures are grouped together and then
more complex structures are combined, until
finally the flow chart is in its most generalized

form.

The method and the program that impiements it
are still in the developmental stage. The program

checkout has been completed . 1t very little

experime~tation has been done. The results of

applying tlie rules are encouraging but the rules
do not reduce all source programs to a most
generalized flow chart consisting of a single

box.

The output of the flow charting program is a
printer-drawn flow chart., No attempt has been
made to produce a well-drawn picture, since this
project is primarily concerned with the analysis
techniques. A number of researchers are working
on the "drawing' problem and it is expected that

this project will utilize their results.

Plans

The next step will be to generate a number of
computer-produced flow charts to be used in
evaluating and refining the method. A study will
be made to see if the seven rules can be extended
to reduce all source programs to one-box repre-
sentations. Further investigation will also be
directed toward determining what constitutes a

‘ flow chart level.

The present output will be replaced with a more
sophisticated "picture-drawing' capability,
preferably by adapting one of the flow charting
programs already implemented outside of SDC, and
an on-1line display console will be used as an
output device. Long-range plans include an
investigation of user interaction with the

program, a feature that is not possible now.

Project Documentation

1. Fine, L. Automated flow diagramming--boxes
end text. SDC document TM-2969/001/00.
Lpril 18, 1966. &/ pp.

2. Fine, L. Automated multilevel flow
diagramming., SDC document SP-2629.

October 26, 1966. 19 pp.

January 1967 1-18

™-530/010/00

Graphic Input/Output*

4. I. Bernstein

The primary purpose of this project is to extend
on-line programming facilities aand techniques
through the use of graphic input/output equipmente-
namely, the RAND Graphic Input Tablet, CRY displays,
and their associated hardware. The attainment of
this goal requires the development of character
and shape recognition routines that function effi-
ciently in an on-=line time-shared environment and
the integration of these routines into both current
on-line programming systems and extended programe
ming systems. To be useful, the character
recognition routines must not only be able to
recognize inputs from a large variety of users,
but must provide the users with a relatively
large character set. The extended systems include
languages for which the placement of characters
is more meaningful and nstural in a two-dimensional
format; for example, in flow charts, automated
analysis and manipulation programs, and theorvem~

proving and game-playing programs.

Progress

The central ideas of the character recognition
techniques being developed are that maximum use
be inade of the seris! nature uof the real-time
input data and that the principal unit of infor-
mation is the stroke. The program extracts
descriptors in the form of ''feature" strings
from each stroke as it occurs. Multistroke
characters require that the strokes constitating

them have the proper spatial relations.

In order to tailor the character recognition
programs to a given user, they are being con-
structed to allow each user to provide hig own
input vocabulary of characters and to associate
these with the desired output character. buring

this procedure a control program constructs a

*Suﬁboféedwin'bart by the Advanced Research
Projects Agency.

January 1967 1-19

dictionary for the user and allows him to test
the level of achievement in recognition. If the
uger is unsatisiied with the results, he may add

samples until the recognition rate is acceptable,

To date, four feature extractors and two
methods of analyzing the spatial relations
bhetween strokes have been programmed for the
Philco 2000 using a RAND Graphic Input Tablet
for input and its associated display for output.

One extractor generates a "feature" each time
it detects a local minimum or maximum in the X
or Y coordinates (i.e., each time the writing
instrument reverses direction of its left-right
or up-down motion). Another divides the stroke
area (the rectangle circumscribing the stroke as
defined by the absolute minimum and maximum
values of X and Y) into four equal areas upon
completion of the stroke. The "feature" list
consists of the subareas through which the stroke
passed in order of occurrence. A third "feature"
extractor divides the stroke area into five sub-
areas by superimposing a diamond-shaped area at
the center of the rectangle. The fourth extractor
fits straight-line segments to the stroke path
and measures local curvature in the path by
computing the angular change between adjacent
line segments. '"Features" in this case are a

function of the collected local angular changes

~ that are all in the»same direction of rotation

(clockwise or counterclockwise). Collection is
terminated by a change in direction of rotation,
by a sharp angular change regardless of direction
of rctation, or by the end of the stroke. The
"features" themselves are classifications based

upon the amount and direction of curvature.

Of the two methods of analyzing the spatial
relations between strokes, only one has proved
useful to date. It classifies the relationship

of a pair of consecutive stroke rectangles into

one of three classes: coincident, proximate, or

unrelated. To those clqesified as proximate or

unrelated, a quantized direction is added. For

T™-530/010/00

this purpose direction is quantized into eight

headings.

The other analyzer, which generates the relation-

ship between the imaginary line segments formed by

joining the stroke end points, has been temporarily

laid aside until more work can be done to provide

better discrimination,

The feature extractors and the first spatial
analyzer have been integrated in a basic control
package which handles the input/output chores and
the construction of the stroke-character dictio-
nary. The dictionary is a tree. All characters
with common beginning strokes have the same path
in the tree, no branch occurring until a dif-
ference occurs. Thus, a "1," a "P," and an "R"
occupy one path in the tree, with the "I" and the
"P" as intermediate and defined sub-elements of

an "R."

Tests with each of these techniques showed a

variety of shortcomings.

The feature extractor based upon the detection
of local minima or maxima in X and Y was overly
discriminating and required too many samples for
adequate recognition., The area feature extractors
were unable to consistently discriminate between
all the 99 characters in the test set. The ex-
tractor based upon measurements of path curvature
and rotation was not completed but appeared to

be overly discriminating.

Several techniqies for better smoothing and
tiltering were tried in order to improve the
min-max extractor, in the bYelief that some of
the problem was due to noise. This did not prove
to be the case and further work on this extractor

has been suspended.

Using similar techniques on the cuvvature feature
extractor showed that noise was not its principal
problem, but rather that there was some incon-
sistency in determining the proper termination
point for each fea.ure in complex characters.

In an attempt to solve this problem, a cornmer

Jatsuary 1967 1-20 TM-530/010/00

FIGURE 1-4. GRAPHIC INPUT/OUTPUT EXPERIMENTATION |

Experimenter writes character oi RAND Tablet with stylus. The display scope shows the large 3
hand-drawn character, plus the computer-recognized matching character immediately above it. J

IText Provided by ERIC ‘

T S D “:;,;:L!_ff.;_;”_'“~ RS B vl

January 1967 1-21

detector was developed that looked at both the
local geometry and path velocity for clues in
locating a cormer. The corner Jdetector proved
successful and was incorporated in both the area
feature extractor (using five subareas) and the
curvature feature extractor. This addition
enabled the area feature extractor to provide
adequate recognition for at least one user on a
set of 99 characters that includes the upper and
lower case Roman alphabet, lower case Greek
alphabet, 10 digits and 13 punctuation marks.

The computer ou which the work was being done
(the Philco 2000) was turned off before completion
of modifications and testing could be done on the

survature extractor,

Plans

In an attempt to smooth the transition from
the Philco 2000 to the IBM S/360G, some RAND
Tablet outputs of drawn charactecss were recorded
on tape and converted to IBM format. This tape
will permit preliminary work to proceed on the
$/360 without full hardware capability and will
provide a controlled mechanism for program

improvements and testing.

Both the curvature and area feature extractors
will be programmed for the IBM S/360 to work
under the SDC Time-Sharing System, initially
incorporating the most obvious improvements.
When the programs are brought to the appropriate
state, the existing versions will be tested for
various capabilities, with a typical set of
poterntial users. Work will also begin on
Ilmbedding the recognizer in a system that allows
& programmer tO prepare a computer routine di-
rectly on the RAND Tablet.

Project Documentation

1. Bernstein, M. I. An on-line system for
utilizing hand-printed input. SDC document
™™-3052. July 11, 1966. 19 pp.

2. Bernstein, M. I. Some system considerations
for on-line character recognition in a time-
sharing system. SDC document SP-2636.
October 28, 1966. 11 pp.

TM~530/010/00

.

Automatic Code Improvement

‘Eo Ro Clar‘k

Almost any program of a certain winimal com-
plexity can be improved. Improvement may mean
making the program shorter in storage space
required, faster in execution time, or rearranged
so that the program logic is easier to understand.
Undoubtedly, these improvements can be done most
effectively by an experienced programmer who
understands what the program is to do. Since
such people are not always available, and, cven
if they are, the process is time consuming and
expensive, a processor has been written to
anaiyze a program automatically and attempt to
improve it, The processor nerds no understanding
of what the program is supposed tc do; its object
is to produce a better program that will do the
same thing,

Progress

A program called SURE (Set-Used REformatter),
has been developed which accepts a program
written in JOVIAL, automatically looks for any
of 11 specific situations, and improves the
program if any of these are found. The particular
methods implemented were selected by weighing the
difficulty of detecting and improving a given
situation against the likelihood that such a

“sltuation will occur. The improvements made in

a well-written program may not be very signifi-
cant, but the processing time of SURE is not
great, and the processed program is permanently
improved since the changes are made at the
symbolic language level. A poorly written

program can, of course, benefit even more.

The original version of SURE generated an inter-
mediate language which was processed for possible
improvements. SURE was rewritten to make its
improvements by working directly on the symbolic
statements. This version mukes the same improve-
ments as before but, not requiring an intermediate

language, is about one-third shorter. SURE

SOV L PO Proa

=

N RO s,

=

-

T s tial L

T,

January 1967 1-22

originally accepted the JTS version of JOVIAL as
input. It now accepts the full J3 language in
addition to the special primitives belonging to

JTS.

Plans

SURE will be modified to run under SDC's S/360
Time-Sharing System. Additiconal methods of
automatic improvements mizht be implemented if
the need for a particular improvement is demon-

strated.

Prgject Documentation

1. Clark, E. k. Executive service: Set/used
reformat processor (SURE). SDC document
IM-2708/205/00. April 7, 1966. 13 pp.

2. Clark, E. R. 9n the automatic simplification
of source-language programs. SDC document
§P-2389. Aprii 11, 1966. 20 pp.

COMPUTER PROGRAMMING MANAGEMENT

Program Cost Analysis¥®

T. Fleishman

V. LaBolle

E. A. Nelson

G. F. Weinwurm ,

d. J. Zagorski (Defense Systems Divisiom)

Description

The aim of this project is to develup tuchmiques,
standards, and guidelines for managers of computer
programming projects, to aid them in planning.
controlling, and estimating the costs of computer
This work has been character-
ized by three major steps, namely: (1) the col-
lection of data that detail the costs and cost

programming jobs.

factors for completed programming jobs by means
of a questionnaire, (2) the validation of these
data to eliminate errors in the data, and (3) the
use of statistical techniques, e.g., multivariate
regression, to derive numerical relationships,
primarily linear equations, for estimating the

cogts of proposed computer programming projects.

I§§ppdrted‘by the Air Force Electronic Systems
Division, Directorate of Computers.

T™™=530/010/00

Progress

Using the foundation provided by earlier results®
from an analysis of data on 74 programming projects
completed at SDC, project membecs did additional
work tn derive estimating equations that were both
easier to use and more accurate. To make the
equations easier to use. the logarithmic trans-
formation adopted earlier for some variables was
dropped--especially for the major cost measures
used as dependent variabies, i.e., man-months,
computer hours, and elapsed time in months. As a
result, a derived statistic cuch as the standard
error of estimate for mun-months could be measured
in those units rath2r than in their log, and the
meaning of the resulte could be readily inter-
preted. To improve the accuracy of the equations,
seven data points with excessive cost measures
were c¢liminated. This truncated sample was used
to derive equations that riduced the strong
influence of these outliers. To further increase
the statistical precision, the remaining total
sample (N = 67) was divided into three subsamples

based on the program size measured in man-months.

Concurrent with this work, an effort was under
way to validate additiona’ data collected earlier
to form a wmore homogencous and representative
sample from svurces other tham SDC. These new
data were to be merged with the SDC data to form
a larger data base that would be analyzed in
similar ways. The new analysis was to stress
subsampling &s a way to derive more accurate

equations.

In the latter part of 1965, over one hundred
data points from completed programming efforts
were collected from 8 industrial organizations
and .4 U. S. Air Force agencies. After authentica-
tion of these data in the spring of 1966, the newly

acquired data points were combined with the SDC

*See SDC document TM-2712, Research into the
Management of Computer Programming: A
Transitional Analysis of Cost Estimation
Techniques, November 12, 1965.

January 1967 1-23 - 530/010/00
£
ﬁ% data on hand, to form a total data base of 169 - Procedure-Oriented Languages are more effec-
- data points as inputs to the enalysis. tive (see Table 1-2), i.e., have lower resource
¥ Four subsamples were analyzed as meaningful use, object instructions, and computer usage
&J ways to divide the data in terms of costs: rates, thun Machine-Oriented Languages.

(1) Programming Application--a division of . The average expaneion ratio is approximately
3.3 Machine Language Instructions to one Procedure-

programsinto categories--Business, Scientific,

Utility and Support, and Other (a miscellaneous Oriented Language Instruction. T

category such as ccommand and control, research TABLE 1-2. MEAN COSTS, PRODUCTION RATES,
f and development); (2) Program Source Language, gggégg:ﬁgﬁgnmxgégidgATEb BY
ﬁ a separation between programs written in machine-
f oriented languages and procedure-oriented lan- | y' “’ ﬁ T -]
4 . (1) ! tion r Sio | | ‘ | Mean |
;% guages; (3) Production Computer Size, a division w l “Mgan lcomputor
N based on equivaleat purchase price of small, 1 Number | Mean “ Meanw‘Objeit ‘prs/wooo
S ‘ | of | Man- |Cmptr |Instr/Man< Object | |
; gj medium, and large computers; and (4) Stand-Alone Applicatioanoints‘MonthsM Hgs ~ Momth | Iﬂ::r H
i{ -3 versus System Program, "one-shot" programs — —— f —t—— 1 —] f
g ‘ ‘ . pMachinev M b | 1 g
9] produced as single entities versus programs Oriented 1 123 48 | 289 610 | 30
>§ E% created as integral parts of a larger information ;}Procedure- H “ N ‘
processing system, H‘Qriented | 46 18 | 99 1977 w 10

Within each of the four groups, statistical

tests of significance were performed on the The data for the other two subsamples, Computer

means of the following variables: Man-Months, Size and Stand-Alone/System, showed no cenclusive

Computer Hours, Elapsed Time in Months, Number

&3 O3

results,
of Object Imstructions, Source and Object Pro-

duction Rates (Instructions/Man-Months), and Several sets of estimating equations were derived 5

for the total sample and for a number of subsamples.

Source and Object Computer Usage Rates (Computer

Hours/1000 Instructions). The results of these These results, as well as others, were summarized

in a handbook for estimation of computer program- "

g T

ez

L

= tests on the data (see Table 1-1) ghowed the
ﬁ le following: ming costs. The equations for the subsamples

i‘gj . Utility and Support programs are more costly presented in the Management Handbock [3] exhibit

| fJ to produce than the other thres applications. better statistical precision than the equations

| % . Business (file-oriented) programs are less for the total sample.

{3} P costly than the three other program applications. The Management Handhook also contains other

‘ TABLE 1-1. MEAN COSTS, PRODUCTION RATES,AND material based upon technical literature and the |
- COMPUTER USAGE RATES BY APPLICATION experience of project members. These guidelines
é n f “"” T | —— = =—1 are intended to help managers estimate the cost
; &J | 13 : Mean of computer program development. In the handbook
, Number| Mean | Mean Oh fect the computer programming process is divided into

of | Man- ‘\Cmptr | Instr/Man €

six categories: Preliminary Planning and Cost

Application|Points

Months ‘ | Hrs ‘ ; Month
d ‘ : ‘ {* —t ' Evaluation; Information System Analysis and
4 Business | 79 73 1521 ,]
‘§ﬁ " Scientific M 27 l 137 “ 882 | Design; Computer Program Design, Code, and Test;
tility and} Information System Integration Test; Information
! EX 1. P A6 o |
| t::gport H gg‘ 766 ‘ 410 ~ System Installation and Turnover; and Computer
| \) .

b

|
i
N
J
A

|

January 1967 1-24

Program Maintensnce. BEach of these process
steps is described in terms of tasks, inputs,
and outputs. For each step a number of cost
factors are listed together with some statistical
and/or intuitive indication of their influence
on costs. Planning factors such as unit costse
or percentage-of-other-item costs are also given
for the process steps. Examples of forms for

recording cost estimates are also included.

This Handbook should be interpreted as an
initial effort to present the manager with a
comprehensive set of applicable guidelines.

If feedback indicates that guidelines in this
form are useful, the Handbook should be sup-
plemented and revised as more information becomes
available through further research and develop-

ment.

No further analysis of the collected data is
scheduled at this time; however, the analytical
results to date and the data bate could be used
in future project endeavors, such as the one
planned for the first part of 1967, namely, the
continued development of an operational system
to collect cost data during the program develop-

ment process.

Project Documentation

1. LaBolle, V. Development of equations for
estimating the costs of computer program
production. SDC document TM-2918. April 5,
1966. 49 pp.

2. Fleighman, T. Current results from the
analysis of cost data for computer programming.
SDC document TM-3026/000/01. July 26, 1966.

97 pp.

3. Nelson, E. A. Management handbook for the
estimation of computer programming costs.
SDC document TM-3225. Octaber 31, 1966.
141 pp.

4. LaBolle, V.
of computer programming.
Engineering. 1966, 17 (11), 564-571.

Development of aids for managers

Journal of Industrial

TM-530/010/00

A System for Reporting Cost Data for
Computer Programminpg®

L. Farr (Advanced Systems Division)

T. Fleishman

V. LaBolle

E. A. Nelson

C. L. Starkey (Defense Systems Division)

G. F. Weinwurm
Description

In the work to develop estimating equations for

computer program development costs (see p. 1-22),
one major difficulty was obtaining data that
relate products to costs. Even when these data
were available, they showed the poor quality of
"after-the-fact" data--unstructured, ambiguous,
and disorganized. Recorded data were aimed mainly
at orgenizational or contractual accounting and
not at planning and control of computer program-
ming projects. The reporting system being
developed is intended ror use during a computer
programming project. In addition to prcmoting
the recording of uniform data that can be
compared from project to project, the system
gshould provide information for cost control of
individual projects and inputs to a data bank
that can be analyzed to supply improved planning

factors.

Progress

The inicial effort in the development of a
reporting s'stem was completed during the first
This work used a definition of

the computer programming process as a context in

part of 19 o,

which to identify and define proposed data clements
to be collected in the system.

The programming process was broken down inte the
following seven steps: Information Processing
Analysis; Information Processing Desir 1; Computer
Program Design; Computer Coding and .aeckout;
Computer Program Functioral ‘'lest? Information
Processing Integration Tes’.; and Information

Processing Installation and Implementation.

*Supporﬁed by the Air Force Electronic Systems
vivision, Directorate of Computers.

s:
‘
E
L]
’

4

S

o e

B = R e L A S -

S T T S TR T RS

L s

i

e,

e

January 1967 1-25

Each step identifies a stage in which a subset
of the proposed set of data elements is to be

collected.

Several forms were duveloped to collect the
data at each process step. Separate forms were
proposed for (1) collection of both cost data
and technical data, (2) tracking of estimated
and actual costs and cost factors through the
life cycle of a computer programming project,
and (3) formation of a quantitative history of

resource exypenditure patterns.

The system is intended to provide a basis for
collection of comparable (uniform) cost and tech-
nical data from .omputer programming development
projects whether performed "in-house' by the
Air Force or by a subcontractor.

The first version was designed to be compatible
with existing management and budgetary systems,
e.g., the Prograw Budget, Cost Information
Reports (CIR), and System Program Management
Procedures, as described in the AFSCM 375 series.
As part of a task to consult for the SAC Airborne
Data Automation Project, members of the Program-
ming Management Project made recommendations for

data collection on computer programming work.

Plans

Review of the completed work by managers has
suggested areas of potential improvements, such
as clarifying the definitions of the cost and
technical data items. The continued work is
aimed at making these improvements. Plans for
the early part of 1967 call for testing the
feasibility of the system in an Air Force agency
that is responsible for a large number of pro-

gramming projects.

Project Documentation

1. Weinwurm, G. F. Data elements for a cost
reporting system for computer program
development. SDC document TM-2934/000/02.

™-530/010/00

2. LaBolle, V. and Fleishman, T. Programming
managenment project consulting for the SAC
airborine data automation project. SDC document
TM-3094. August 18, 1966. 24 pp.

COMPLETED STUDIES
The following studies in the Advanced Programming
area were completed prior to 1966 and are not
described in this report.

Compiler Construction Techniques

1. Book, E. The LISP version of the META compiler.
SDC/I1I document TM-~2710/330/00. November 2,
1965. 11 pp.

2. Book, E. and Bratman, H. Using compilers to
build compilers. SDC document §P-176. August
31, 1960. 11 pp.

3. Book, E., Bratman, H., Schwartz, J. I. A one-
pass JOVIAL compiler. SDC document TM-970/

4, Book, E., Bratman, H., and Schwartz, J. I.
JOVIAL-X.2, the language of the one-pass
JOVIAL compiler. SDC document TM-970/002/00.
January 31, 1963. 11 pp.

5. Cohen, V. L. and Hopkins, J. S. Phase I of
the JOVIAL generator (NGENL). SDC document
T™-555/021/01. March 17, 1965. 343 pp.

6. Dobrusky, W. B. Design for JOVIAL compiler
for the small computer. SDC document TM-739.

7. Englund, D. E. and Clark, E. R. The CLIP
translator. Communications of the ACM, 1961,
4, 19-22, (Also available as SDC document

8. Oppenheim, D. K. The METAS5 language and
system. SDC document TM-2396. July 21, 1965.
49 pp.

Programming lLanguages /

1. Foote, E. B, and Sandin, N. A. JIS users’
manual. SDC document THM-1577/000/01. April
8, 1965. 63 pp.

2. Isbitz, H. A formal description of CLIP.
SDC document TM-543. October 14, 1960. 18 pp.

3. Kameny, S. L. LISP 1.5 reference manual for
Q-32. SDC document TM-2337/101/00. August
9, 1965. 85 pp.

4, Kameny, S. L. Input-output file and library
functions: The Q-32 LISP 1.5 mod. 2.5 system.
SDC document TM-2337/102/00. September 22,
1965. 14 pp.

1:f
!

SN eTeemea e

SRS

e Lot

January 1967 1-26

7.

Perstein, M. H. The JOVIAL (J3) grammar and
lexicon. SL° document TM=-555/002/04.
October 20, 1965. 138 pp.

Shaw, €. J. A comparative evaluation of
JOVIAL and FORTRAN IV. Automatic Programming
Information, 1964, (22), 1-15.

Weissman, C. LISP primer: A self-tutor for
Q-32 LISP 1.5. S8DC document TM-2337/010/00.
June 14, 1965. 166 pp.

Computer Programming Management

1.

Farr, L., LaBolle, V., and Willmorth, N. E.
Planning guide for computer program develcpment.
SDC document TM-2314. May 10, 1965. 179 pp.

Farr, L. Quantitative analysis of computer
programming cost factors: A progress report.
SDC document SP-2036. August 26, 1965. 19 po.

LaBolle, V. Office of naval research/computer
program implementation process: Final report.
May 1965. SDC document TM-1954/004/00.

June 3, 1965. 25 pp.

Nelson, E. A. Research into the management of
computer programming: Some characteristics of
programming cost data from government and
industry. SDC document TM-2704/000/00.
November 15, 1965. 43 pp.

Peach, P. Quality control for computer
programming: A final report on an initial
study. SDC document TM-2313/001/00.
September 9, 1965. 17 pp.

Weinwurm, G. F. Research into the management
of computer programming: A transitional
analysis of cost estimation techniques.

SDC document TM-2712/000/00. November 12,
1965. 203 pp.

T™-530/010/00

s

January 1967 2-1

TM-530/010/00

INFORMATION PROCESSING RESEARCH

T. B. Steel, Jr., Head

The activities oi che Information Processing
Research staff for the past year fall into three
main categories. First, there are studies in the
area of formal models of information processing
concerned with the development and analysis of
theoretical descriptions of various aspectu of
information processing systems. Second, there is
an effort to study and develop information pro-
cessing systems intended to promote more effective
cooperation in man-machine teams in problem-
solving contexts. Finally, some work is continu-
ing in attempts to advance the frontier of support
technology in the area of programming languages.
This last work is reported under the topic of
Advanced Programming (see p.1-1 et seq.).

The importance and relevance of the first class
of projects derive from the phenomenal growth of
the information processing field. As a result of
this growth, most developments in technique have
been ad hoc and empirical; theory is virtually
nonexistent. The history of science strongly
suggests that, unless the development of a
theoretical framework begins to catch up with
ad hoc studies, and organize them, progress will
slow down. Thus, the principal objective of
these projects is the pursuit of theoretical
investigations into the nature of information
processing procedures. While the means of inves-
tigation may occasionally be empirical and parti-
cular, the objectives remain theoretical and

general,

A common theme among this first set of studies
is the development of abstract models, covering

machines, programming languages. procedures, and

algorithms. Although the individual models are
disjointed and sometimes even mutually contra=-
dictory, the employment of common research
techniques is intended to lead to a ratiomal
attempt to locate integrating principles among the
various theories. This latter endeavor, while

not fornulated as an explicit study, is an under-
lying researca objective.

The principal achievement of this research is
the development of fundamental insights into
information processing principles. In pavticular,
continuing study of the relationship between the
phrase-structure grammars developed by linguists
and the procedure-oriented programming languages
is important not only to a comprehension of the
general structure of language, but to the improve-
ment of ways in which languages of all kinds may
be developed and processed. Additionally, the
growing understanding of several models of data
processing in terms of formal logic, in particular
a model of question asking, shows promise of
providing substantial tools for integrating a
variety of information processing problems in a
form susceptible to analysis.

The second category of studies--in the area of
man-machine partnership--is evolving in a signifi-
cant manner. In previous years these studies were
a disparate collection whose principal connection
was the fact that they were all concerned with
“'artificial intelligence." During this past year
the Information Processing Reseawch staff,
together with representatives of other staffs,
conducted a study into the meaning and utility of

artificial intelligence reésearch both in the

~N
h
(2%}

January 1967

general research community and in the particular
context of SDC's mission. The study concluded
that "pure'" artificial intelligence research was
not of central intervest to SDC's mission, and,
indeed, was becoming a less attractive research
area in general. However, exploration of the
possibilities of man-machine interaction with the
objective of augmenting man's intellect was not
only of key importance to SDC, but also held

pronise of great general value and interest.

As a result of this conclusion, together with
the recognition that the skills and techniques
required are similar to those previously being
employed in the artificial intelligence area,

a gradual redirection of this research is under-
way. The change in title of the "Research in
Adaptive Programming' project to 'Problem Solving
and Learning by Man-Machine Teams' reflects this
movenent. A new study, "Augmented Statisti-
cian,'" is an example of a direct attack in the
new direction. As time goes on, this new area
will come to characterize this part of the staff's

work.

During 1966 several projects previously under
investigation were terminated (see Compleved

Studies, p. 2-14). One significant development

TM-530/010/00

has been the continuing withdrawal of SDC
involvement in several projects where the principal
investigator has been a consultant to SDC. In
these cases, termination of SDC's participation
has not meant a cessation of the research but
merely a shift in the institutional arrangements

for the study.

In summary, during 1966 the Information Processing
Research staff has reoriented its activities some-
what toward an emphasis on problems more central
to SDC's mission. It has also worked toward
bridging the gap between research and application,
both by better communication and by research
emphasis. One of its chief aims continues to be
the development of a science of information

processing,

Note: The work of several of the following
members of, or consultants to, the Information
Processing Research staff is described elsewhere
in this report:

S. Y. Sedelow, T. L. Ruggles - Stylistic Analysis

(see under Language Processing & Retrieval -
p. 5-17)

D. P. Haggerty - Translation Between Procedure=
Oriented Languages

W. E. Meyer - PL/I for SDC 360 TSS
(see under Advanced Programming - p. l-1 et seq.)

i
i

ag

\
- January 1967 2-3 TM-530/010/00
»
? FORMAL MODELS OF INFORMATION PROCESSING Progress
k 1 Computer algorithmic languages are formal g
; | Theory of Algorithmic Languages® languages; that is, they consist of a formal ?
E 7. Doner syntax‘for‘deriving the meaningful units of @
| S. Ginsburg expression such as words, clauses, sentences, ¥
| T. N. Hibbard | e . |
% G. F. Rose arithmgtﬁc expressions, etc. Several grammatical %
i Consultants: S. A. Greib?ch, Harvard University; systems for deriving thérﬁyétaXOOf forma? lang?ageS‘ ?
| M. A. Harrison, University of California, are in the literature. These give rise to various 5
L gi:?:fe%;rgélz;;sgénéfrﬁlggzzfraigi1§§cgilif- families of formal languages such as the recursively ‘?
| University ehumerable sets, context sensitive languages, :
FE Description context free languages, and regular sets. Formal ?
: A serious drawback in the application of modern languages are also defined by special kinds of é
{ é data processing systems is the cost and time acceptors such as the finite-state acceptors and 15
L ? consumed in programming these complexes. The the pushdown acceptors. Both‘grammaficam and i
| é user's problems and their solutions are described aicepio;;ias:dmethOdshOf d:fini:gforTal \ g
; i in a language such as English. To use the :3°r;1° anguagei aved:enthﬁveStlf:t: as %
| % services of a data processor, this descriptive ave the languages obtained by these methods.
| j language must be converted into machine language; 0f all the models used to consider programming
F f that is, into program steps. In recent years, languages, the most universally accepted one is
? attempts have arisen to bridge gaps by construct- that of the context free language (i.e., a language
? ing programming languages that are: defined by Backus normal form). Four of the five
| 1. Rich enough to allow a description of the technical reports written during 1966 concern
solution of a wide range of problems. this model. In [1] context free grammars are
2. Reasonably close to the user's ordinary considered in which indexed brackets are inserted
language of description and solution. around the right-hand side of the rules in the
3. Formal enough to permit a mechanical trans- grammar. The resulting language, called 'bracketed,"
lation into machine language. appears to be a natural component in the theory of

The purpose of this investigation is to accomplish transformational grammars, a topic of concern in

the following: natural languages. In the report, an algebraic

1. Conduct research designed to develop a theory condition is given for one bracketed language to

for algorithmic (programming) languages. be a subset of another. It is also shown that

2. Develop suitable mathematical models of the intersection and difference of two bracketed

currently used mathematical languages such as languages with the same brackets and terminals is
ALCOL, COBOL, and JOVIAL.

3. Use the mathematical models to answer

a context free language. Report [2] concerns a’
special family of context free languages that

questions of ifiterest about these languages. arose from mathematical considerations. In it,
two characterizations of bounded regular sets

are given. In addition, certain connections with

items of mathematical interest are noted. Inmfhl,
*éﬁbﬁaried‘inrbart by the Air Force Cambridge
Research Laboratories, Office of Aerospace congidered. The partial algorithms considered
Research, and the Air Force Office of Scientific
Research, Office of Aerospace Research.

partial algorithms for context free grammars are

here are of the following form: "Suppose a certain

Javruary 1967

problem is known to be recursively unsolvable,
but in a particular case is known to have a

solution. Can aiw algorithm (called a partial
al

Among the results obtained are the following:

orithm) be found to determine the solution?"

There is no partial algorithm for findimg,-given
context free grammars‘Gl‘and GZ’ a generalized
sequential machine (complete sequential machine)

which maps the language generated by G, onto the

]

language generated by G In [5], a new device

is given which‘recognizgs exactly the context
free languages. (This device, unlike a pushdown
acceptor, is a special kind of linear bounded
acceptor.) The languages recognized by the
deterministic form of the device result in a
larger class of unambiguous languages than that

given by deterministic pushdown acceptors.

Report 3] concerns itself with a device that
is more powerful than a pushdown acceptor. This
device, called a one-way stack automaton, has the
same features as the pushdown acceptor with the
additional feature that i‘. can go into its push=
down store and recd, but not write. It is thus
more realistic i. wmodeling curremt compilers.

The family of ianguages acvepted by these accept=

~ors is then studied. In particular, various

closure properties and solvability questions are

considered.

Blans

Future work is expected to extend the research
to more realistic acceptors and the languages
accepted‘by these devices. Studies are also
under way to find new kinds of grammars and new

ways of using old grammatical rules.

Project Documentai:ion

1. Ginsburg, S. and Harrison, M. Bracketed
context free languages. SDC- document TM=738/
023/00. January &4, 1966. 35 pp. (To appear
in the Journal of Computer and System
Sciences.)

2. Ginsburg, S. and Spanier, E. H. Bounded

regular sets. Proceedings of the American

‘ y, 1966, 17, 1043-1049.

X

™-530/010/06

3. Ginsburg, S., Greibach, S., and Harrison, M.
One-way stack automata. SBC document TM~-738/
025/00. April 22, 1966. 58 pp. (To appear
in the Journal of the ACM.)

4. Ullian, J. Partial algorithm problems for
context free languages. SDC document TM-738/
027/00. October 10, 1966. 34 pp.

5. Hibbard, T. N. A:generalization‘ofrcontext
free determinism. SDC document ‘IM-738/028/00.
November 21, 1966, 67 pp.

6. Ginsburg, S. and Ullian, .J. Ambiguity in
context free languages. Journal of the ACM,
1966, 13, 62-8¢.

7. Ginsburg, S. and Spanier, E. H. Semigroups,
Presburger formulas, and languages. Pacific
Journal of Mathematics, 1966, 16, 285-296.

8. Ginsburg, S. and Rose, G. F. A characteri-
zation of machine mappings. Canadian Journal
of Mathematics, 1966, 18, 381-1388,

9. Ginsburg, S. and Rose, G. F., Preservatior of
languages by transducers. Intormation ard
Control, 1966, 9, 153=176.

10. Ginsburg S. and Ullian, J. Preservation of un~
ambiguity and inherent ambiguity in context
free lenguages. Journal of the ACM, 1966,

13, 364-368.

11. VUllian, J. PFailure of a conjecture‘abéut
context free languages. Information and

12. Ullian, J. S. and Hibbard, T. N. The inde-
pendence of inherent ambiguity from comple-
meatedness among context free languages.
Journal of the ACM, 1966, 13, 588-593. (Also
available as SDC document TM-738/010/00.)

13. Greibach, S. A. The unsolvability of the
recognition of linear context free languages.
Journal of the ACM, 1966, 13, 582-587. (A'so
available as SDC document TM-738/015/00.)

14, Ginsburg, €. and Spanier, E. H. Finite-turn
pushdown automata. Journal of SIAM on_Control,
1966, 4, 429-453. (Also available as SDC
document TM=738/020/00.)

The Logic_of Qu

T. B. Steel, Jr.

N. D. Belnap, Jr., Consultant at SDC
(University of Pittsburgh)

A large body of literature concerning the logic
of inference is in existence. The logic of

inference has a considerable impact on the infor-

- mation processing sciences, even though it is

essentially a logic of declarative sentences.

January 1967 2=5

Men rarely assert things to machines; rather,
they command or question them. Clear desiderata,
then, are a loglc of imperatives and a logic of

interrogatives. Nelther exists.

Initial focus is upon the logic of questions
on the grounds that it appears easler to formu-
lece. The tirst objective of the study is to
formulate suitable criteria for deciding what
kind of formal system will be acceptable as a
logiec of questions. An informal example of such
a criterion ig: it must be effectively decidable
about any piece of language whether it is a
question or not and, if it is, it must be
effectively dzciduble what pieces of language
count as answers (although not necessarily true

answers).

Given a satisfactory set of criteria, the next
task is to develop one or more gpecific examples
of a formal legic of questions in order to
gearch for fruitful theorems, Apart from its
intrinsic interest such a loglc is imperative as
a basis for the design of processors for true
problem-oriented languages. In such languages,
the user will! simply describe a problem for
machine solution, in contrast to the present
practice of providing a technique for solution

via a procedure-oriented language.

Progress

A set of criteria has been develecped and a
rather general formal system has been analyzed
subject to the criteria. Notions allied to what
is loosely meant in ordinary language %y

"question,'" '"direct angwer, complete answer,"

" and even '"rhetorical question"

“partial answer,
have been defined. The fallacy of inany questions

("Have you stopped beating your wife?") is
p

disposed of neatly when subjected to this analysis.

As a result of these analyses, the criteria have

been modified to sharpen theilr impsci.
The key element in this approach that dis-
tinguishes it from previous attempts at &an

interrogative logic is that a question is treated

™=-530/010/00

as identical with a declarative sentence on both
the syntactic and semantic levels of analysis.
It is recognlized as a question only on the

pragmatic level, by observing that the user

intends the statement as a question.

A detailed document claborating the theory has
been published [1). Under revision is a paper
intended to outline the connection of this logic
with data processing applications. In particular,
the paper discusses the reduction of English
questions to the necessary formalism. This paper
includes a correlation of the work in this project
with the Synthex project (see p. 5-7) and other
query systems. 1In addition, it elaborates and
modifies the quantification analysis found in
[1] on the basis of study completed during the
year and establishes several new notions pertinent

to the logic of questious.

Project Documentation

1. Belnap, N. D., Jr. An analysis of questions:
Preliminary report. SDC document TM-1287.

AUGMENTATION OF MAN'S INIELLECT

Problem Solving and Learning by Man-Machine Teams#

A. M. Hormann, Principal Investigator

T. L. Ruggles

S. S, Shaffer
Description

This study seeks to develop a syste.. of computer

programs that can exhibit some "adaptive' and
"intelliigent' behavior in a variety of problem-
solving situations, and thus to develop a machiae
capable of playing the role of "partner' to man
in his intellectual/creative endeavor. The first
stage of the research has been concerned with how
to develop an adaptive, intelligent, problem-
solving system--Gaku [1 and 2]. The second stage

has been to design a task environment that caun be

*Supported in part by the Office of Naval Research,
1‘J‘o So ‘NaV}'.

LT LTER LG AT I

January 1967 2-6

controlled by the experimenter as he presents
problem situations differing in kind and com-
plexity {3 and 4]. 1in this environment, a human
will attempt to solve a given problem by inter-
acting with Galm, using its capabilities in

varisus aspects of problam solving and learning.

One of the reasons for stressing the "learning'
capability of Gaku is the researcher's belief
that an intelligent, adaptive machine will be an
appropriate nartner for man in those problem
situations in which the man does mot have a clear
idea of, or cemplete information about, how to
solve a problen, how to find answers, or how to
perform a task. In such situations, detailed
decision making in advance is impossible or
infeasible. Man may start with incomplete intoe-
mation and vague ideas about solution methods
and strategies (and, therefore, insights can be
gained only during the course of problem solving
and interaction with the machine). The human
user cannoc decide in advance exactly and
completely what machine capabilities he will
need, or what techmniques, methods, concepts, and
terms he will use. He must decide as he proceeds
and must teach the machine, thus allowing it to

"grow" intellectually with him.

Although the development of Gaku is far from
the desired sophistication level indicated above,
it has been decided to use the system in a man-
machine context in order to gain new insights
into certain research problems. By this means,
Gaku's limitations and capabilities will be
discovered, and ways to improve the learning
mechanisms and the cowmunication means will be
explored. It may then be decided to make either
major design changes or relatively simple modi-

fications and additions.

Progress

The design of a task environment for man-
machine interactive problem solving has been
complieted and its implementation on SDC's $/360
Time-Sh?ming System has begun. A brief

T™-530/010/00

description of the environment called Shimoku
follows; it includes little discussion on Gaku
since Gaku has been described in last year's annual
report, and in [1] and [2].

The basic design of Shimoku is a four-in-a-row
game in which marked counters are used in a
4x4, 4x4xb4, or 4x4xbx4 board or playing surface
(the size of the board is one of the factors
determining complexity). Four-in-a-row positions
are determined in the same manner as are those
of 2-D, 3-D, and 4-D tic-tac-toe (see Figures 2-1
and 2-3). The counters are marked with numbers
and suits, similar to a set of playing cards
(in Shimoku, however, four shapes of counters are
used instead of suits). The scoring rules include
elements that are similar to poker (see Figure 2~2),
and the action rules consist of '"placing,"
"sliding," and "exchanging'" counters or the

playing surface of the given board.

In [3), a detailed description of Shimoku is
given and some sample problem situation<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>